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Chapter 1

ESTI MATI NG WATER POLLUTI ON CONTRCL BENEFI TS USI NG
PARTI CI PATION MODELS:  EXECUTI VE SUMVARY

The research summarized in this report was conducted for the U S
Envi ronmental Protection Agency in support of that agency’'s efforts to
conply with the requirenents of President Reagan’s Executive Order 12291 of
February 1981. That order nade cost-benefit analysis of proposed ngjor
regul atory decisions mandatory, even when that analysis could not, by |aw
be the basis for actual decisions. \Were environmental regulations are in
question, the techniques and databases necessary to successful cost-benefit
analysis are still far from sufficiently devel oped to support routine
applications.1 Accordingly, the Ofice of Policy Analysis wthin EPA has
supported research with the dual goal of developing data and nethods and of
generating actual benefit estimates.

The specific charge for this study was to devel op nethods for
estimating the benefits of water pollution control as they accrue to
soci ety through effects on participation of individuals in swiming (in
natural water bodies), recreational boating, and recreational fishing in
Geat Lakes and marine water of the United States. This particul ar
conbi nation of activities was chosen as representing the najor prom sing
extensions to the work done in an earlier project on the benefits accruing
via freshwater recreational fishing. (Vaughan and Russell, 1982).

To put the effort in perspective, it is worth reviewi ng the benefit
estimates collected and critically reviewed by Freeman (1982). In table
9.1 (p. 170) Freeman gives as his “nost likely point estimate” for tota

annual water pollution control benefits (1978 dollars) $9.4 billion
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Alnost half this total ($4.6 billion) he estimates in chapter 8 to be
accounted for by “Recreation”. This broad category he in turn has broken
down into five subcategories: freshwater fishing, marine sports fishing,
boating, swinmng and waterfow hunting. The last category accounts for a
tiny percentage (about 2 percent) of the $4.6 billion total. Swimming and
the two types of fishing are estimated to account for about 22 percent each
(about $1.0 billion per vyear), while boating is estimated to account for
almost 33 percent (or $1.5 billion). Thus, if successful, a project
providing inproved benefit estinmates and methods for future estimation
exercises for fishing, boating, and sw nmng would enhance EPA's ability to
deal with a substantial fraction of the currently estimated total benefits
to be expected fromthe ongoing U S. program of water pollution control.

W believe that overall the project has been successful. As will be
docunented below, substantial progress has been made in clarifying the
prom se and problens inherent in the traditional participation nethod for
dealing with recreation decisions. Further, a very different method for
produci ng benefit estimtes has been adapted to the peculiarities of the
avai lable data on boating participation. The application of the
traditional methods to the fishing and swimmng activity categories was,
however, only partially successful. The | esson we draw from parti al
success is, however, of sone inmportance in its own right, for it points to
some fundanental data gaps that nust be filled before benefit estimation in
these areas can be really successful, let alone a routine operation for a
regul atory agency.

The renmainder of this chapter is devoted to a general introduction to
conceptual problens and opportunities with the participation nethod, and to

an anticipatory summary of major results. This wll set the stage for
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chapters dealing with each of the conceptual problens in nore detail
(2,3,4); and chapters describing applications to fishing (5,6,7), and
swming (8.9). In chapters 10 and 11, a different technique is explored
in estimating benefits accruing via boating. Here the focus is on
ownershi p decisions (of the necessary capital good, the boat) rather than
on activity decisions about days of boating. This nethod has nuch to
recommend it where the data are available to support it. A concl udi ng
chapter pulls together the inportant conclusions and re-enphasizes the

inplications for future research.

PROBLEMS W TH PARTI Cl PATION ANALYSI S AS THE BASI S FOR BENEFI T ESTI MATI ON

For nore than two decades, applied economc nodels of consuner
recreation decisions have proceeded along two parallel tracks, the
parallelism seemngly dictated by the nature of the data available for
model estimation (C cchetti, Fisher and Smth 1973).

The “macro” track has been characterized by the recreation
participation equation approach. It involves an attenpt to estimate a
relationship explaining the pattern and intensity of i ndi vi dual
participation in specific recreational activities at a national or regional
| evel of spatial analysis, regardliess of the places (sites) where the
activities took place. The “mcro” track, in contrast, is characterized by
travel cost nodels attempting to econonetrically capture the denand
relationship for the services of a single known site or group of sites.

Wiile both the “macro” and “mcro” approaches appear to stand on firm
theoretical foundations, those foundations were not build independently of
the way data on recreation happens to be coll ected. The data for

estimating the “macro” relations cones from large cross-sectional
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popul ation  surveys containing information on the  socio-economnc
characteristics of the respondents, leisure activities in which they
engaged (if any), and their intensity of participation in these activities
over a specified tine span (for exanple, see U S.D.I n.d.). Such
popul ati on surveys generally contain mnimal information on where the
respondents recreated or could have recreated. Consequently, analysts have
no information on the vector of individual-specific travel costs indexed by
activity category and site (which are anal ogous to goods prices in nodels
of consuner demand for marketed goods as di scussed by Wnnergren 1967)
associated with enjoying the several activity categories surveyed. Thus,
el aborate theoretical reasoning has been brought to bear sinply to explain.
why such price-type data is not needed in nodel estination.

This |ack of precise individual-specific price data, along with a
focus on activities rather than sites, and the collection of information on
non-participants as well as participants are the features distinguishing
the "macro" approach fromthe site-specific travel cost nethod (G cchetti
Fisher and Smith 1973). They are also the features which, unfortunately,
have confounded our understanding of just what the macro nodel represents -
a structural demand equation or a reduced form- and have rendered welfare
analysis with it extrenely tenuous.

The study reported here focussed on three questions central to the
application of the macro or participation techniques to the estination of
benefits of a policy change. First, what is the place in the nodels of
nmeasures of availability or quality of the relevant resource (fishable
water to participation in fishing). Such neasures are necessary to the
reflection of the results of policy and hence to prediction of post-policy.

participation, which are in turn the basis for benefit estimates. It is
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therefore not surprising that nmeasures of availability do appear in
participation. \What they are doing there is another matter.

Second, it is necessary to |look carefully at how participation
equations are actually estinated given the special nature of the data
avai | abl e on consumer choices. Thus, in the last decade or so, estimation
of m croeconom ¢ nodel s of consumer behavior using large individual- or
househol d-1 evel data sets has flourished and proven an inportant advance in
applied econonics. Details typically masked in aggregate time-series data
analysis are often available in individual cross-sectional data, thus
allowing the testing of hypotheses about responses of individual or
househol d demand- supply bundl e choices to changes in constraints.

It is in such mcro datasets that one tends to find neasures of
demands and supplies that econom sts woul d characterize either as corner
solution realizations of instantaneous optim zing decisions or as discrete
representations of such decisions. An exanple of the former case would be
where one has data on the number of hours an individual worked in the
mar ket over a given year, and for some subset of individuals no narket
hours were worked. An instance of the latter case, is where data are
avai l abl e only on whether or not an individual had purchased sone consumer
durabl e over the previous twelve nmonths, but not on the anount of the
expenditure.  Assuming the statistical nodels deternining |abor supply and
durabl es demand to be the objectives of estimation, then the forner is an
exanpl e of what have cone to be known as limted dependent variable (LDV)
nodels, while the latter is a nenber of the class of qualitative dependent
variable (QDV) nodels. Tobin's pioneering 1958 paper on durables demand is
the forerunner of LDV estimation in econom cs. Using data on 735 mcro

spending units, Tobin nodeled the ratio of durables expenditures to
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di sposable incone; for 183 of these spending units, no durables were
pur chased during the tine period of interest and a “corner solution” had to
be treated. The solution to this problemwas the genesis of the Tobit
estimator, which will be discussed below in chapter 4. Note that had Tobin
only data on whether or not there was some durable purchased rather than on
the actual anmount, a QDV nodel (such as binary probit or logit) would have
been the appropriate approach

In recreation participation nodeling, owing to the nature of the
available mcro data, standard econonetric techniques such as ordinary
| east squares (OLS) will typically be inappropriate tools for the analysis
of recreation participation. The available data on participation
decisions, rather, are usually qualitative or limted dependent variables
and nore conplicated estimation techniques are in general required in order
to obtain consistent estimates of the paraneters governing the
participation outcomes. Maxi mum |ikelihood is the estinmation method nost
comonly used in such anal ysis.

In previous enpirical analyses of recreation participation (Vaughan
and Russell (1982)), efforts were focused less on the subtleties of the
statistical and econonetric methods used than on the devel opment of a
uni fied framework for assessing enpirically the effects of water quality
changes on participation. As such, the analysis was restricted to those
econonetric methods that were |ess resource-consuming than is true of nmany
of the nore sophisticated iterative maximum |ikelihood techniques to be
described below in chapter 4. This strategy was foll owed consciously,
t hough at the expense of the possible inconsistencies resulting from
ignoring such subtleties. In the present endeavor, enphasis is shifted to

an evaluation of the inplications of certain characteristics of the
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participation neasures (e.g., nonnegativity of some nmeasures, discrete or
grouped measures) for estimation strategy and, as a consequence, for
benefit estimation

The third question to ask of the participation method is, How, if at
all, can we obtain dollar values fromit. The “mcro” travel cost nodel
being a structural representation of a single demand function or a denand
system can be enployed directly to produce site val ues. It can also be
used to assess the wel fare change occasioned by adding or deleting a site
froma pre-specified systemof sites, or to answer other welfare-related
questions, such as the benefits of upgrading site quality, as well. Its
primary limtation is an arbitrary definition of the scope of the problem
specifically the identification of a subsystemof sites which can
reasonably be nodel ed without omtting rel evant substitutes.

The participation equation “macro” nodel begs this question by
ignoring sites per se. But, since prices do not appear as independent
variables in the nodel specification - due primarily to data deficiencies
in our view - direct welfare analysis with such nodels woul d seemto be
i mpossible. But the macro nodels are used, in an indirect way, for welfare
analysis. Indeed, their primary practical purpose has been the prediction
of changes in participation levels over tine or across space under
alternative hypothetical public policies directed toward the supply of
recreational resources. These changes, and hence the policies engendering
them are usually valued using a unit value which Freeman 1982 graciously
refers to as an “activity shadow price”. The nonetary wel fare measures
assigned to the possible policy alternatives are then obtained as the
product of the predicted change in days of participation, sumred over the

popul ation, and the unit value. (See Freeman 1982 for a catal og of severa
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such studies, including one by the authors of this paper. Researchers with
the perspicacity not to assign a dollar value to projected participation
changes include Hay and McConnell 1979.)

To those famliar with the site-specific travel cost approach, the
unit day value method may seem no nore than an irrelevant curiosum but in
fact its use is commonplace. It is a practice that was recommended, unti
recently, by the Water Resources Council and was cited recently as an
alternative when other nethods were not available (WRC 1979). It has been
used to value an entire recreational fishery in British Colunbia (Pearce
Bowden 1971), and to estimate the recreational benefits of the Illinois
river in Cklahoma under the WId and Scenic rivers Act (U S. Departnent of
the Interior 1979). O her agencies, including the Corps of Engineers
continue to use this nethod. Mreover, the Forest Service, in responding
to requirenents of the nultiple use and sustained yield |egislation has
i ncorporated the equivalent of unit day values in their programm ng nodel s
(Sorg, et. al., 1984). Finally, the nmethod has found frequent application
in analyses of the national recreation benefits of water pollution contro
prograns, as catal ogued by Freeman 1982.

The unit day value approach to obtaining the welfare effects of a
policy change is particularly convenient when no information other than a
prediction of a policy's inpact on days of participation is available from
a nmacro participation nodel. But, there are three problenms with the
"macro" nodeling approach: differential site quality characteristics are
not accounted for; prices are often omtted in estimation; and unit val ues
are enployed to nonetize predicted quantity changes. The first two
problens |ead to biased predictions of quantity change while the first and

third distort the estimate of welfare change, -even if the quantity
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predictions are accurate. Only rarely are these linitations acknow edged

(an exception is Sorg, et. al., 1984).

AN EXPERI MENT WTH A MORE DI RECT METHOD: THE CASE OF RECREATI ONAL BOATI NG

The conventional participation equation nethod of estimating the
recreational benefits of water quality inprovenent policies focuses on the
changes the probability and intensity of leisure activity participation
occasioned by the prospective policies. Since, for many such activities,
lunpy expenditures for activity-specific consuner durables are not a
prerequisite for participation, their role is ignored in both theoretical
model devel opnent and econonetric estinmation. Instead, trip cost or a
proxy thereto plays a paramount role (See chapter 2 and Vaughan and
Russel |, 1984).

There are two conpelling reasons why the standard participation
equation nethod nmay not be the best approach to the investigation of the
benefits of water quality inprovenent accruing to activities such as
recreational boating. One is theoretical and one purely data-rel ated.
First, boating obviously requires a boat, which can either be rented or
owned. It also requires an environnental service, boatable quality water.
So, from the theoretical side, these obvious relationships suggest that
Maler's notion of weak conplementarity (Miler 1974, pp. 131-139) between an
indivisible private good (the boat durable) and a public good (boatable
quality water), can usefully be enpl oyed. The notion inplies that a
portion of benefits of a change in water quality can be identified via the
estimation of the demand relation for the private good, the boat durable,
which itself depends on the level of provision of the public good. This is

the portion of the total benefit accruing to new entrants to boat
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recreation, assumng standard operating year participation |evels. It is
estimated in chapter 10. The remaining portion of the benefits, that which
accrues to existing boat owners who participate nmore intensively, is
estimated in chapter 11.

In this connection the consuner can be regarded as having a direct
utility function defined over discrete durable goods, a numeraire conposite
comodity, and the service flows fromthe durable, if it is owed. |In the
boating case, the service flow can be proxied by the number of boating
trips enjoyed over the year. W choose to nodel this problemin two steps
(for a nore sophisticated treatnment see Hanemann 1984). In the first step
the discrete ownership probabilities for various boat types are
econonetrically nodeled via conditional logit. In the second step the
demand for the continuous quantity, boat trips, conditional on ownership,
is modeled via regression analysis, under the assunption that the
conditional density (conditional in the sense that boat ownership is
chosen) of the positive realizations is |og normal. The procedure is
anal ogous to one variant of the class of hurdles nmodels discussed in Cragg
1971 and chapter 4 bel ow. It departs from the unified treatment in
Hanemann 1984 in the sense that the estimating equation for the continuous
choice is not derived froman underlying theoretical utility maxinmzation
nodel, al though the discrete choice nodel is. Rather, the continuous
quantity equation estimated in our second step is best regarded as an
approxi mati on. The practical significance of this shortcut is that an
overal | conpensating variation neasure of welfare change associated with
nore boat ownership and nore trips due to pollution control cannot be
obtained. Rather, while a conpensating variation measure is available for

the first benefit conponent, we nust settle for an ordinary Marshallian
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surplus for the second. (For an exanple of how to get a theoretically
consi st ent conpensat i ng variation wel fare measur e out of a
discrete/continuous utility model once all utility function paraneters are
statistically estimated see Hanemann 1982a.)

But, before becomng involved with the details of discrete choice
nodel i ng, anot her inportant consideration should be raised. This is the
nature of the avail able data. As noted above, participation-type nodels
require detailed information on individuals, both in terms of the choices
they made and their characteristics. Unfortunately, the best source of
data on boating, the 1976 Coast Cuard Nationw de Boating Survey, contains
al nost none of the infornmation required by the participation equation
appr oach. Particularly, the absence of good soci oecononm c data on
respondents, (especially non-owners) rules out the application of the
participation equation method to the Coast CGuard Survey data. But, the
survey's detailed information on boat ownership by type of boat and
category of recreational use, nunmber of boat outings per household, and
trailer mles per outing, nake it an attractive source of data which, when
suppl emented by independent information on boat costs, can be put to use in
estimating a nodel of discrete (durable goods) demand, and a continuous
model of trip demand conditional on boat ownership. Thus, both theory and

practical necessity drive toward this experinent.

ANTI Cl PATI NG THE RESULTS

The results produced by the several subprojects briefly described
above are of interest principally because they chal |l enge what has becone
the conventional wisdomin this area, the nunmbers pulled together and

critiqued by Freeman 1982. anticipating the summary and conparisons to be



1-12

provided in the final chapter of this report, we can say that every benefit
number reported here is lower than the corresponding nunber in Freenman's
key table, after the latter are adjusted to 1983 prices by the Consumer
Price Index. Indeed, all but one of our numbers -- the lower linit of our
Geat Lakes and marine fishing benefits -- are lower in 1983 terns than
Freeman’s 1978 dol lar figures.

How much lower? for all the activities dealt with in this report,
quite substantially. comparing nost likely point estimates, we find the

hi ghest relative RFF nunber to be 30 percent of Freeman's Great Lakes and

marine recreational fishing. The lowest, for boating and sw nmm ng
together, is only five percent of Freeman's corresponding figure. (See
table 1.1).

One nust, of course, treat all the nunbers in these conparisons with
great caution. Freeman has outlined the problens in the earlier studies he
has  synt hesi zed. The chapters of this report will enphasize the
difficulties and uncertainties that plague our work. It is worth saying
for a first time here, however, that the major problemis with data. Mst
fundamentally, it is inpossible to find conprehensive water quality data
for the pre-pollution-control situation of the basis of which participation
or other relations can be estimated. The data that are available are not
conpr ehensi ve in geographic coverage, consistent in quality and coverage of
particular pollutants, and for the nmost part do not include paraneters that
can reasonably be hypothesized to enter into recreationist’s views of
availability of water resources for their activity decisions. For exanple,
systematic work on swimming benefits requires data on the extent of

pol lution relevant to swimring, such as turbidity and mcro organi sm

counts. These pieces nust be available conprehensively enough that we can
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Table 1.1. RFF and Freeman Benefit Estimates Conpared
(109 dollars, 1983, per year)

RFF Freeman® Erge?rrsan% °

Freshwat er Fi shing 0. 92 1.5 60
Marine & Geat Lakes b

Fi shing 0.4 1.5 30
Boat i ng 0.2¢ NA 2.3 9
Swi mmi ng o NA 1.5 nnf

Boating and

Swi i ng 0.2 0.01¢ 3.8 (5)(0)
Total s 1.5 1.3 5 (39(19)

n.mf. = no meaningful figure.
Not es:
a.  From Vaughan and Russell 1982 with correction to 1983 using the CPl.

h. From chapter 7 bel ow
¢c. Fromchapter 11 below, using the conplenentary good nethod.

d. From chapter 9 below, a generous interpretation of the results for
swimming alone in table 9. 26.

e. Fromchapter 9 below, the nean of the overall benefit estimates in
table 9.26.

f.  From Freeman 1982.
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characterize the reduction in availability of sw mable water due to
pol lution at the level of the state or, preferably, the county. They are
not now available in anything like that detail

The estimates produced in this report depend not on such conprehensive
objective data, but rather on the largely subjective characterizations
reported to us by responsible state officials. \Wile these are at |east
reasonably conprehensive (See appendix C to chapter 5) the nature of the
survey process that produced them nust give us pause in their
interpretation.

Still, these survey nunbers are arguably nore to the point than the
characterizations lying behind the earlier studies, and it seens reasonable
to think that conventi onal wi sdom  about the likely size of
participation-based benefits is due for readjustment. This is not to say
anything about the so-called intrinsic beneits being sought in other

EPA- supported projects.

PLAN OF THE BOOK

The reader whose mgjor or only interest is in the benefit measures
just briefly discussed is invited to skip ahead at this point to chapter
12, the final chapter, where the nunbers are summarized. Those readers who
have some interest in methodol ogical issues per se will want to begin at
the beginning, wth chapters 2 through 4. These cover, respectively the
role of recreation resource availability variables in participation
analysis; the pitfalls of two-step (probability/intensity) estimation of
participation - based benefits; and some of the nore recent devel opnents in
estimation techniques for models using qualitative, truncated or censored

dependent vari abl es.
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Subsequent to these general nethodol ogical discussions we have three
maj or sections in which the specifics of data and method are presented for
marine and Geat Lakes recreational fishing, swinmming (in natural water
bodi es but not disaggregated by type of water) and recreational boating
(also not divided into fresh and saltwater) respectively. The chapters
i nvol ved are:

fishing: 5-7

swiming: 8,9

boating: 10,11

The final chapter, as indicated above, provides a summary of the

benefit estimates.
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NOTES
L. This discussion abstracts from conceptual problens of doing any cost
benefit analysis for certain kinds of proposed regulations. For exanple,
where the effects of the regulation apply specifically to the discharge of
one industry. The benefits can only be determ ned by making arbitrary
assunptions about what is happening to other industries. This is because
I ndi vi dual plants occur in nulti-industry regions rather than in

single-industry clunps.
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Chapter 2

THE ROLE OF RECREATI ON RESCURCE AVAI LABI LI TY VARI ABLES
I'N PARTI Cl PATI ON ANALYSI S*

Suppose a decision on providing or not providing some general addition
to recreation resources hinges on what inpact the addition is projected to
have on participation in the activities to which they are relevant. For
exanpl e, suppose a decision about expanding canping areas across the U S
is to be made on the basis of the projected addition to canmping activity
attributable to the addition of resources. This problemsetting allows us
to postpone until later consideration of the problens of valuation wthin
the participation nodel context.

To address the problem a cross-sectional data set reflecting individua
l eisure-time pursuits and the soci o-econom ¢ characteristics of the same
individuals is required, so that population |eisure participation can be
estimated econonetrically as a function of these characteristics, as in
Settle (1980). It al so seens necessary to have variables neasuring the
supply of recreation resources appear as argunents in the equations to be
estimated, so that the effect of alterations in supply can be appraised
directly. But, a question arises at this point: Do such supply variables
belong in recreation participation equations, in the sense that the
equation specification is consistent with economc theory?

A hint of the answer is given by the travel-destination/nodal-choice
literature, where relevant independent variables in the enpirical nodel of
choice are the variables that would appear in the consumer’s indirect
utility function--for exanple travel cost (anal ogous to goods prices), site

*A version of this chapter has been published in The Journal of
Envi ronnental Managenent, vol. 19, 1984, pp. 185-196
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attributes, consumer income and consuner characteristics (Hensher and
Johnson 1981, Rugg 1973, Small and Rosen 1981). Unfortunately, few, if
any, recreation participation surveys froma broad sanple of the popul ation
contain detailed individual-specific information on travel and other costs
incurred in going fromplace of residence to the recreation site or sites
chosen, let alone other potential sites not chosen. Nor do the surveys
nornal ly identify the location of individuals or sites at all precisely.

Thus, if a correctly specified recreation participation equation is to be
estimated econonetrically from such survey data, a proxy variable nust be
devel oped which can stand in, however crudely, for the expected site prices
associated with an individual’'s participation in one or nore recreationa

activities. Fortunately, this variable is indeed a resource supply
vari abl e.

Previous enpirical analyses of population recreation participation in
broad activity categories (rather than site-specific travel cost studies)
have either enployed a neasure of average variable travel cost consistent
with theory (Zienmer and Misser 1979; Ziener, et. al., 1982) or, when such
measures were unavailable from survey data, substituted aggregate "supply"”
variables as proxies (Davidson, Adams and Seneca 1966; Chicchetti 1973,
Deyak and Smth 1978; Smth and Munley 1978; Hay and MConnell 1979;
Vaughan and Russell 1982) or even ignored the problementirely (Settle
1980). The rationale for such proxy recreation resource supply variables
has generally been vaguely asserted rather than clearly established. Yet
it makes intutitive sense to link participation to the “availability” of
recreation alternatives neasured in terms of quantity (nunber of facilities
in a geographic region) or quality (nunber of facilities per capita to

account for congestion) (G cchetti, Fisher and Smith 1973). In fact, it is
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possi ble to go beyond intuition and provide a firmrationale for the
i nclusion of explanatory physical supply quantity variables in recreation
participation equations. W do so below, using the case of a water-based
recreation activity (eg. fishing).

A version of the theory of distance estimators of density (or in our
case density estimators of distance) developed in the statistical ecology
literature can be applied to show that expected travel cost should be
functionally related to the nunber of water bodies per unit land area in a

region.

RELATI NG DENSI TY AND DI STANCE

The idea behind this link is intuitively appealing, the nore objects
there are randomy arranged in a given space, the closer will be the
nearest such object on average, to any randomy chosen point. |If we knew
the parameters of the process that put the objects in their places, we
could obtain an exact expression for the expected distance. However, we
will usually not know either the exact process behind the location or the
parameter appropriate to an approxi mate process. In those circunstances,
whi ch characterize the anal yst |ooking at actual water bodies in regions
and wondering about a proxy for travel cost, observed density of the bodies
may be used either directly or after transformation as a proxy for expected
di st ance.

To tie down the intuitive idea with a bit nmore rigor, assume that a
region can be divided into N equal -size squares. These squares will be
taken to be units. Sonme nunber, n of “tiles” representing water bodies and
also of unit size, will be placed on the grid by a random process such that

the probability of a “tile” falling on a square is 1/N=P. More than one
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tile can land on a square, so that after all tiles have been placed, the
observed nunber of “lakes” will be wsn. If Nis large (p small) the
resulting probabilities of a particular nunber, m of tiles falling on any

chosen grid square can be approximated by the Poisson density function:

" (np)™
P(m;np) = ..e—-_-_g——-—

m!
The expected number of water bodies, allowing for multiple tiles per

square, is N(1-e") = w.  Because ¢ can be approximted by the first

few terms of the series

np
2! 3!

1 - np +

and because np = n/N <1 by assunption, it is also true that wN, the
observed density of lakes, is an approximation for np, the Poisson
paranmeter (often witten as A).

Thus, WN = 1-e’"P = 1-(1-np) =np = n/N

This approximation result is inportant when the objects on a grid nay
be assuned to have been distributed according to a Poisson density function
with parameter x. Then it is possible to show that the expected distance
E(r) froma randomy chosen point to the nearest such object is given by

2

E(r) = Igrzvme'”‘” dr

o - 2
= IOZnAr 207AT" %4

The derivation of this expected distance formula is reasonably

straightforward. By the Poisson distribution the probability of no objects

inacircle of radius r is:

-rmr?

P( A2 =0) = e
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If the nearest object appears at distance r fromthe center of this circle,
we can define an annular ring of width dr within which it is the only such

object. The area of the annular ring is

w(r + dr)? - wr? = q(r2 + 2rdr + dr? - r?)

= n(2rdr + dr?

Ignoring terms in (dr )> we can approximte the probability that the band
contains the one object by

e 2 Ar o adr) /1
using the reasoning devel oped above. Note, however, that

xe X

Ik

2 3
x(1-x+-2X-!--%l-+...)

n
>
1
>
+
[
+

Since X = i2wrdr, and ignoring terns of order 2 and higher in dr, we have

2mrdr ke 2T ER 2 o

If the two events (no objects within the area =~*; one object within
the annular ring with area =(2rdr - zr*;.are assuned to be independent
their joint probability is the product of their individual probabilities.
Thus the joint probability density function of distance r is the product of
the Poi sson probability expressions for finding zero objects out to r and 1

object in the narrow band at r

- 2
fF(r) = 2mrae ™ ar

Thus, the expected value of r, or of the average distance to the nearest

obj ect from random points in the space, as a function of the density
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parameter is:

~\mr?

ATr?
™ odr = 2mirie dr

E(r) =] r 2mrie

O g
O~ 8

This definite integral can be shown to produce:

-1/2

E(r) = =i

L
2
which is to say that the expected distance froma randomy chosen point to
t he nearest object depends on the Poisson paranmeter. Thus, if we can
approximate » by w N, we can approxi mate E(r) by 1/2(V\/I\D'1/2 so that
expected distance falls with increasing density: This relation is shown in
figure 2.1.

The variance in expected distance (VARTr) can be obtained by
recogni zing (Larsen and Marx 1981, p. 114) that VAR(r) equals E(r?) -

-0. 5

(E(r))2 The expected value of r is already known to be 0.5 so the

1

second termin VAR(r) is this quantity squared, equal to 0.25% '. To

obtain the expected value of r’ we take the definite integral:

2 - 2
E(r?y) = 2mxfrie AT g
0
T 3 1
= omy L(2) 2mA

2(ma)? = 2(mh)= = Tam
So,
S N
Var (r) = = 5
Putting this expression in terms of a comon denom nator and
sinplifying

VAR =4S = 006857
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and the variance of the expected distance also falls with density.

Wile these relations have Dboth intuitive appeal and formal
justification, there are several possible pitfalls associated with using a
measure of the density of water bodies (acres per acre) in the region of
interest as an inverse proxy for distance and hence travel cost.

First, the relation between nmeasured density as a point estinmate of
expected density and x» is better the smaller ». This may be seen by
i nspecting the series approximation for e P gi ven above. The smaller n
relative to N the nore rapidly the terns with exponents greater than one
approach zero. Thus, the nore richly endowed the region the less reliable
the approximation

Second, in the real world water bodies do not come as discrete unit
area pieces, or indeed as pieces of any common Size across a single region
| et al one across several regions. Thus, the assunptions underlying the
derivation will be violated in actual regions. Particularly, data on
surface acreage (rather than the nunber of |akes) is the nost common
measure of the availability of water for recreation, and surface acreage is
conposed of lakes of varying sizes as well as rivers and streans. So the
Poi sson forest anal ogy does not translate perfectly in application.

To see the problem|et ;, measured as the square niles covered by the
objects (lakes) per square mle of regional surface area, be the available
data.  Suppose that all objects have the same size, m so that x (nunber of

units) = i/m. Then,

) =050 %% =05 (v 00 T30
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So, if mis constant across regions, * can be used as a proxy for i as an
expl anatory variable in estimating activity participation relationships,
since the constant tern1(mo'5) will nerely scale the estimated availability
paramet er . A plausible assunption is that |large | akes are conposed of
clusters of equal radii objects, so proportionality between i and i is
mai nt ai ned. It is however, inplausible to think that mw Il be constant
across regions; and finding a set of region specific average a I's neither
practically non-theoretically appealing.

Third, even if the objects of interest are of uniform size across the
regions, but their locations were generated by a heterogenous, nonrandom
process rather than a honpbgenous Poisson process (i.e., the objects
centers were not uniformy and independently distributed) the expected
distance formula will not hold (Ripley 1981, Ch 7, 8).

Finally, if the intensity paraneter varies from place to place but the
manner in which it varies is unknown a priori, spatial groupings cannot be
establ i shed which uniquely reflect the variation in the several population
A's associated with the different regions. All one can do is to produce
different area-weighted nean density proxy measures for i for different
| evel s of aggregation across space.

For exanple, in a 100 by 100 grid, we generated two sanples with 400
objects (x = .04) and two sanples with 200 objects (x = .02). The distance
to the nearest object was conputed from 81 points systematically |ocated at
the intersection of lines of latitude and longitude ten units apart.
(Border intersections were excluded). The expected value of distance to
the nearest object is 2.5 mles for A = .04 and 3.54 nmles for A =.02. The
sampl e outcones for expected distance and the associated standard errors of

the means from this sinple experinent show that in these cases the sanple
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means are all within one standard error of the popul ation expectation given

by 0.547°°7:
A= .02 A= .04
Sample 1 Sample 2 Sample 1 Sanple 2

Sanpl e Mean

Di stance 3.38 3.61 2.41 2.59
Std Error of Mean 0.19 0.20 0.16 0.13
Theoretical ly

Expected Distance 3.54 2.50

Note, however, that if we were to sanple over both grids believing
that both belonged to the sane population (i.e., shared the sanme ) our
estimate of 1 would be (200 + 400)/2(10,000) or 0.03 and our expected
di stance woul d be 2.89. Al though this expected distance would perhaps be
realistic for individuals located on or around the border delineating the
regions (particularly the geographic centroid of the two regions together)
it would not be for individuals |ocated some distance fromthat border, who

nore properly should be assigned their respective region - specific

expected distances.

SOMVE | MPLI CATI ONS FOR AGGREGATI ON: MEASURI NG THE PROXY FOR i

Wth aggregate real world data we do not pick a set of random points in
space and mark off the distance from each of those points to the cl osest
"object" (i.e., water body), to estimate a value for » fromthe inverse of
expected distance fornula. Rat her we use acres of objects per acre of
total area as a proxy for x and hence for expected distance. The question
Is how to demarcate the relevant boundaries of total regional areas?

Counties, conbinations of counties, or fixed areas around each indivi dua
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could be used, but the cutoff distance over which our proxy for i should be
measured is unknown.®
However, a University of Kentucky Water Resources Institute survey
(Bianchi, 1969) of over 3,000 fisherman reported that only slightly nore
than 8 percent travelled over 30 miles to fish. Simlar calculations of
the percent of days fishing by travel distance can be made from U. S

Departnment of the Interior, 1982:

One- Wy
Di stance Frequency
(m | es) (%
0-5 19
6- 24 25
25-49 17
50-99 14
100- 249 10
250- 499 3
500-999 l
>1000 Nil
The nmedian travel distance fromthis data is 32 mles. The Davi es

test of skewness (Langley 1970) suggests this data is approximtely
logarithmic in distribution, so the geometric mean is appropriate, yielding
a value of 31.6 mles. It also appears that 250 mles would be a generous
upper limt for the radius of the region whose characteristics deternine
recreationi st behavior. Two alternatives, then, suggest thenselves. One
is to use density data only from an individual’s county of residence. At
the other extreme, circular regions around the centroid of the individual’s
county of residence could be constructed and wei ghted density data from all

the counties represented in this region used to construct a neasure of .
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CONCLUSI ON

It is appropriate to include two "availability" variables in the
econonetric analysis of recreation participation choice; one to capture the
di stance or travel cost influence via the nunber (or acres) of recreationa
resource facilities per unit land area and one to capture the (expected)
congestion influence via the nunber (or acres) of such facilities per
capita.

Further, it is reasonable to nmaintain that individuals base their
recreation participation decisions on expected (travel -cost based) prices
across the gamut of alternative types of recreation activities rather than
actual prices, since the latter cannot always be known with certainty for a
broad array of activities. In this case availability variables are hot
just proxies introducing errors-in-variables problems into the econonetric
anal ysis (Maddala 1977, Ch. 13). Rather, these observed variables are the
true price variables which we desire to nmeasure based on the theoretica
nodel . In this context errors-in-variables problems would occur only if
the degree of spatial aggregation involved in constructing a nmeasure of &
was too coarse, encompassing several areas which belonged to separate
popul ations, each with its own particular x. In such a situation it is
likely that the estimated paranmeter reflecting the relationship between
participation and average availability will be a biased measure of the true

effect.
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NOTES
1. For further discussion and nunerical illustrations relevant to this

aggregation problem see Vaughan. et. al., 1985,
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Chapter 3
TWO STEP ESTI MATI ON OF PARTI Cl PATI ON BENEFI TS

This chapter focuses on two problens with bifurcating the estinmation
of the benefits of recreational resource enhancenent into two unrelated
steps - quantity change and valuation. Throughout we assume the absence of
systematic error in predicting participation change, though such errors can
either offset or compound the error attributable to assigning an average
unit value to that change. The di scussion is confined to nacro
participation nodels of the aggregate level of recreation activity service
flow enjoyed at an (unknown) site or set of sites, rather than travel cost
model s of the demand for the services of a site or systemof sites, because
in the latter case the ability to estimate demand functions obviates the
need for unit val ues.

After a brief review of the genesis of the two-step nethod the
val uation problem and the theoretical background engendering it is
addressed.  Subsequently it is shown that the two-step valuation nethod is
questionable on theoretical grounds and not likely to provide a reasonably
accurate nmonetary neasure of the welfare <change associated with
participation quantity change stinulated by a policy of recreation resource
augment at i on. Sone nunerical exanples are provided which confirmthe

theoretical results.

ORIA@NS OF THE TWO STEP METHOD OF VALUATI ON
Traditionally, data on the regionally differentiated availability of
recreational resources (acreage or nunmber of |akes, canpgrounds, natura

forests, etc., contained in sone geographic region, often the state) has
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been obtained to supplenment the data in popul ation recreation surveys and
i ncluded anong the set of relevant regressors in the macro participation
nmodel specification. Inclusion of these variables has some basis in comon
sense, as it is intuitively appealing to anticipate that recreation
resource availability variables nust have sane role to play in influencing
recreation participation and intensity. One woul d expect individuals
living in a region anply endowed with freshwater to be nore likely to
engage in water sports, and do them nore often over the year, ceteris
paribus, than individuals living in a poorly endowed region. But nore
inportant, inclusion of such availability regressors in the nodel is

absolutely necessary if it is to be a useful tool for evaluation of

potential broad policies of supply alteration. If there are no supply
variables in the participation equation, participation wll not be
predi cted to change when supply changes, and the policy will appear to have
no inpact the analyst can val ue.

Initially, the inclusion of quantity-type availability variables in
macro nodels was theoretically justified by somewnat vague allusions to
"supply" factors (Ccchetti 1973), although it was never clear what sort of
a supply function was inplied. Later, to help dispel the confusion, Deyak
and Smth (1978) invoked househol d production theory to explain supply in
terms of the household s marginal cost for “producing” recreational service
f1ows. Marginal cost itself for these authors was a function of
“characteristics” variables, which happened to be physical availability
variables in disguise, represented as facilities per capita, a measure of
expected congestion. The consequence of this paradigmwas the essentia
endogeneity of (self-supplied) price, Which practically speaking meant that

only reduced forms could conveniently be estimated. Since the household's
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internally determ ned shadow price is never observed, that left only a
reduced formquantity equation to be estinmated. Hence the requirement of a
second valuation step for welfare analysis.

But, as just denobnstrated in chapter 2, the el aborate theoretica
househol d production nmodel is really not necessary as a vehicle to justify
the inclusion of a neasure of the quantity of recreational resources per
unit land area in econonmetric nodels of recreation participation. This
argument offers an explicit justification for wusing physical availability
regressors as proxies for "average" travel-cost based activity prices in
the direct estimation of an aggregate structural activity demand equation,
rather than a reduced form  However, because of the expected-value nature
of the proxy, parameter bias is the penalty inposed by using it in lieu of
the correct individual-specific activity prices (MFadden and Reid 1975).

Yet the problem of placing a unit dollar value on the participation
change occasioned by a particular policy of recreation resource enhancement
to produce a nonetary benefit measure remains. It is equally difficult
whet her we believe we have estimated a reduced form activity participation.
equation as a function of i ndi vi dual characteristics and site
characteristics neasured by some availability measure, or a structura
activity quasi-demand equation with availability as a proxy for activity
price. In neither case do we observe individual prices directly, and the
best that can be done is to predict a quantity change conditional on a
hypot hesi zed change in availability, and value it arbitrarily in a second
step.

To see why this valuation procedure gained currency, it is necessary
to explore the theoretical background giving rise to a "participation”

equati on.
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THEORETI CAL BACKGROUND: | S THE PARTI Cl PATI ON QUANTI TY EQUATI ON REALLY A
REDUCED FORM?

In order to exploit the calculus, conventional utility theory makes
the inplicit assunption that the consumer’s optinal consunption bundle wll
represent an interior solution in the space of available alternatives.
That is, the maximum of the consuner’s utility function occurs at an
interior point of the budget space where all goods are consumed in positive
amounts, not at a corner where one or nore commodities are not consumed at
all (Russell and WIkinson, 1979).

Quandt (1970) observed that this inplicit assunption is unrealistic in
travel -oriented applications, since consuners do not “undertake a little
bit of travel by every node on every link in a network” (p. 5). The sane
observation can be nmade about |eisure activities, since popul ation surveys
often reveal large proportions of non-participants. Thus, the inplicit
interior solution assunption of conventional wutility theory nust be
rel axed, or the theory itself refornulated, in order to incorporate the
phenomenon of non-participation (i.e., zero consunption).

The first alternative is to remain within the confines of traditional
utility theory, relaxing the interior solution assunption. The corner
solution rationale for zero consunption in leisure pursuits is nade by
Ziemer, et. al., (1982) based on the Kunn-Tucker conditions. Essential ly
this means ruling out the class of utility functions where the marginal
rates of substitution between pairs of goods are everywhere defined and
equatable to the respective goods price ratios. For example, nenbers of
the Bergson famly of utility functions which are all transformations of

. , : . o . n
the additive (in logarithns) homothetic utility function U =p, are
1
i=1
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ruled out, since their indifference curves never cut the goods axes, and
corner solutions cannot occur.

Another route to explaining the same phenonena is to refornulate
neoclassical utility theory along household production Iines. In this
"new' approach, the household does not obtain utility directly from
purchased goods or recreation site visits. Rather, it enploys these goods,
along with its own tine, to produce outputs of utility - yielding entities
(non- mar ket goods, service flows, wants, or characteristics depending on
the author) over which the utility function is defined. (G cchetti and
Smith 1973, 1976).

There are two general variants of the household nodel - the Becker
(1965) version and the Lancaster (1966) version, reviewed lucidly in
Cicchetti and Smith (1973). The Lancaster version, utilized to analyze
recreation choice by Rugg (1973), Mak and Moncur (1980), and Geig (1983)
is particularly appealing because its general form guarantees zero
consunption of sone goods, independent of the class of utility function
speci fied. Conventional utility theory can be regarded as a special case
of the general Lancaster nodel where the production technology matrix is
diagonal. In this latter instance, corner solutions can be produced by an
appropriate fornulation of the utility function. Therefore, the
flexibility of the Lancaster nodel to represent either the neoclassica
case with corner solutions or the “pure” Lancaster case makes it an obvious
choice. But, either theoretical household production nodel yields roughly
equivalent equations to be estimated from survey data explaining
recreational trips. Particularly, the inclusion of incone, site
characteristics, and trip expenses or a physical resource availability

proxy thereto is comonpl ace (See MConnell and Strand 1981, Rugg 1973, and
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Zienmer, et. al., 1982 for superficially conparable "trips" equations
derived fromdifferent theoretical nodels).

To exploit the calculus suppose the popular Becker household
production framework as outlined in Deyak and Smth 1978 is used, with the
restrictive assunption of non-jointness in production. |f the individual's
recreation service flow production function is classically well behaved and
exhibits constant returns to scale, then the self-supply equation is
defined by the marginal cost, nc, of producing service flow g, and is
constant and independent of the levels of production of non-recreationa
service flows. If trip cost is unobserved but is known to be a function
t(a), of availability (Vaughan and Russell 1984) we get (1la.) bel ow | f
site characteristics affect marginal household production cost via expected

congestion (Deyak and Smth 1978) represented by h(a) we get (1.b):

m = t(a) (1.a)

m = 3c/8q = f(p,w h(a)) (1.b)
wher e

nmc = individual’s marginal cost

c = total cost
q = recreation service flowin constant quality units
p = prices of market goods
a = resource availability
W = wage rate
t(a) = trip costs as a function of availability.
h(a) = expected congestion as a function of availability.
Each individual’'s inverse demand function can be expressed in terns

of income and tastes. [f WP is the individual's nmarginal wllingness to
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pay for the service flows, and the utility function is of the Bergson

famly with zero cross-price effects:

w = 22 - g (y,5,9) (2)
where
y = individual‘s incone
s = individual's tastes

TWP = total willingness to pay

The superstructure of (1.b) and (2) above can be recast into the
neo-classical nold of (1.a) and (2) if additional restrictive assunptions
are inposed (the zero cross-price assunption can be relaxed)
Particularly, goods prices can be treated as exogenous if we assune:

¢ a fixed total leisure tine constraint so there is no inconme -
| ei sure tradeoff,

e trips of constant duration with zero fixed costs so the “price” of
atripis equivalent toits variable (travel) cost,

e activity categories within which sites are of fairly honogenous
quality -eg. trout fishing in coldwater streans,

@ a factor of proportionality converting site visits (or trips) in an
activity category into a service flow uniquely related to that
activity over which utility is defined.

In the Deyak and Smith nodel of Eq. 1.b and 2 individual equilibrium
is determi ned where the level of g equates nc to WP.  For estimation, the
Deyak and Smith nodel produces two reduced form equations from the
structural equations in (1.b) and (2), and estimtes (3) bel ow.

g =(y, s, p, h(a), W (3)
WP = ¢(y,s,p,h(a),w) (4)

nc
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In contrast, the neoclassical structural activity demand nodel estimates
the demand function version of (2) directly. Since travel cost-based price
is viewed as exogenous by equation (1.a), reduced form equations (3) and
(4) are not required. The neocl assical nodel leads to a specification
expressing q as a function of resource availability (or price, if
avai l abl e), incone, and tastes.

An overriding consideration in all of this is the desire to arrive at
an enpirical specification which does not require price regressors, since
such information is unavailable in nost popul ation recreation surveys.!
Particularly, those who view availability variables as proxies for the
quality of the experience, manipulate the househol d production nodel either
to produce a reduced formquantity equation as above (if service flow
out puts can be neasured) or derive input demand equations (where site
visits are treated as inputs). Irrespective of this sort of definitional
| egerdemain, in many applications the equation specification does not
include price regressors, which happens to fit nicely with the character of
the data. But, this practice is inconsistent with the theoretic&
househol d model, be it a reduced formlike Egq. 3 or, alternatively, a

derived site visit input demand function. 2

(See Bockstael and MConnel

1983 for the latter, perhaps nore reasonable, theoretical interpretation).
Specification error bias is the obvious penalty paid for ignoring prices in
this context. In contrast, those who argue that availability variables
represent proxies for expected activity price attenpt to define activity
categories finely, so that quality is roughly constant, and view the
estimated quantity equation as an activity demand curve. Thi s

specification also fits well with the survey data, but involves no

i nconsi stency between theory and practice, because the estinated proxy
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price paraneter ideally should capture the true parameter, up to an unknown
factor of proportionality. Because the availability proxy for the price
represents expected travel distance, aggregation bias due to averaging over

i ndi vidual s (MFadden and Reid 1975) is a possible shortcom ng

VALUATI ON | SSUES

The conceptually correct Mrshallian neasure of benefits arising from
increased resource availability may be witten in terms of structura
activity service flow supply and demand equati ons. Consi der any
i ndividual, whose marginal cost of obtaining the recreation experience is a

function of recreation resource availability:

0

mc’ = marginal cost at pre-policy availability
a’ particular to the individual
m' = marginal cost at post-policy availability

a' particular to the individual
Suppose a policy of supply augmentation so a' > a'. The individual's
marginal willingness to pay for the experience is the demand price, WP, a
function of the service flow quantity g. For the j'" individual the net

benefit of a policy of supply augnentation, NBj(aﬂaS can be witten as:

1
NB.(a%,a') = /e WP(q)dq+g° me’-mc’i-mctlgl-q°] (5)
J qQ°
This expression is depicted graphically for two individuals in figure 3.1.

The aggregate net benefit of the policy is the sumover all j=1,,---

i ndividuals of the net benefits in (5):

NB =
J

14

NB.(a®,al) (6)
1 _



Individyel | individual 2

wp,me

AYS)

q(-cl(ao)) q(-cl(-l)) ‘ q(-c:(uo)) , q(-cz(-l)) O
9 |
Legend
™ nb‘(no.ll) = CtA = AIDIC-B = l\\*

atnc'(a)))

vp(q)dq = AlD

'l(-c‘(ao))

(a(nc! (ag)) (mc* (a)-me' (1) = €
(m"(a)) (atmc’ (o D)-atnc tagh)) = 8

Figure 3.1. Individual net benefits of increased availability
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As noted above, however, it would be very unusual to have the detailed
i ndividual data necessary to performthe calculation witten so easily. A
common situation is to have data allowing a prediction of the total
increase in quantity produced froma macro participation model, g(qi-q°)
o 3
and, from an independent source, a unit value to assign to the quantity
change.
For instance Ccchetti, Fisher and Smth (1973) suggest:
..., the reduced-form participation equation can
al so be used, as we have suggested, to derive a
measure of the benefits froma new facility. The
amount of participation in an activity is first
forecast under changing conditions of supply, i.e.,
w thout and then with the new facility. Then a
measure of value or willingness to pay nust be
inputed to each unit (recreation day) of additiona
participation. Such neasures have in the past been
set for federal projects by water-resource agencies
and approved by the U S. Senate. Aggregate
benefits are given by multiplying the inputed val ue
per unit of participation by the change in the
level of participation occasioned by the new
facility. (p. 1011).
But, no explicit distinction is made by these authors between unit val ues
which are conceptual Iy equivalent to marginal willingness to pay (i.e.
activity prices or, in the household model, unobserved shadow prices) and
unit values which instead represent average willingness to pay over all
units consuned (i.e., average consuner’s surplus for the activity),
al though they seemto have had the fornmer in mnd
A survey of the unit value literature reveals that nost reported
val ues are approximations to average, not marginal, wllingness to pay
(Dwyer, Kelly and Bowes 1977). If so, the direction of the valuation bias
can be derived, and we do so below But first, if we assume marginal unit

values are available, can the procedure be justified?
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Val uation with Marginal Unit Val ues

As McKenzie 1983 observes, there are two routes to welfare
nmeasurenent; the fanmiliar one where consumer demand functions are known,
allowing direct conputation of the Marshallian surplus neasure; and
al ternative index-nunber approximtions based on "only the prices and
quantities that hold in alternative situations but not information about
the shape of preferences or the consuner demand functions” (p. 101). The
two-step valuation nethod in this context is a particularly sinmplistic
version of this second route

Wil e the adjective marginal may evoke a subconsciously synpathetic
response, valuation of a quantity change with marginal unit values (prices)
does not guarantee a close approximation to the Marshallian consuner’s
surplus neasure of welfare change, let alone the desired measures the
| atter approximates, conpensating and equi val ent variation. To
denonstrate, begin with the nost general case where a single price changes.
Al though the consumer’s denmand function for the good whose price has
changed is unknown, assume that the quantity changes for all goods in the
consumer’'s choice set are known, as are the initial and final price
vectors.

Wien a single price changes the product of the n dinensional row
vector of all n goods prices (nmeasured at either their pre-policy |evels,
p’, post policy levels, p, or an average of the two) and the n dinensiona
colum vector of quantity changes can be used to produce welfare
approximations if the demand function for the good whose price has changed
is unknown (MKenzie 1983, Ch. 6.; Deaton and Miel | bauer 1980, Ch. 7).

These neasures are known respectively as the Laspeyres and Paasche quantity
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variation indices (LQV, PQV), and Harberger’'s consunmer surplus (HCS).
Representing the marginal utility of expenditure in situation j as VY and

the utility index as U

- ¢ = 0

LQV = ZpiAqi AU/ A (7)
- 1 - 1

PQV = ZpiAqi = AU/ (8)

HCS = 1/2(LQV+PQV) = 1/2(AU/A° + AU/AY) (9)
where i =1,..., N goods.

It can be shown that the HCS neasure is an approximation to
Marshal I ian consumer surplus, since it sinply takes the short-cut of
assumng the Marshallian demand curve is linear in the region of the price
change (Deaton and Miel | bauer 1980, p. 188; MKenzie 1983, pp. 109-111).

However, the two-step valuation method, |acking information on the
own-good demand function and the quantity changes taking place outside the
mar ket of direct interest, is nore restrictive than the general case
represented by (7), (8) and (9). It deals nore narrowy with the product
of price and quantity change for the good whose price has changed, ignoring
quantity changes for all other goods. So, the partial neasures anal ogous

to (4), (5) and (6), indexing the good whose price changes as i are:

LQV = paq, = AU/A° (10)
PQV = piag, = AU/A! (11)
HCS = 1/2(LQV + PQV) = 1/2 (AU/A° = 28 %) (12)

The partial index number measures assume, perhaps incorrectly, zero
cross-price effects. Except for unusually restrictive demand systems (eg:
Cobb- Dougl as) when the price of a single good, i, changes, the quantities
of sone other goods j=i will change as well. But if other goods quantities
change, the partial LQ/, PQV and HCS neasures used in recreation benefits

anal ysis which ignore the sum of P49, for all i=3 are unlikely to bring us
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reasonably close to the ideal welfare change measures, conpensating
variation (CV) and equivalent variation (EV), or even to the approximtion
they bound, Marshallian consumers surplus (CS).

The only case where quantity changes in other goods induced by a

change in the price of the jth good can be ignored in calcul ating QQA PQV

and HCS i's when the elasticity of demand for the jth

good is unitary in
absol ute val ue over the region of interest. To prove this, arrange the arc
price elasticity of demand fornula (where e represents the absol ute val ue

of the arc elasticity) as:
172(pi+p) (p=af)) = 1/2(qj+q]) (p{-p e (13)

The |.h.s. of (13) is the definition of the partial Harberger consuner
surplus neasure, HCS, Expansion of the r.h.s. reveals that it represents
the arc elasticity neasure, e, times an approximation to the Marshallian
consuner surplus integral CS obtained by linearizing the (unknown) demand
curve between q; and qi

cs - 1/2(qi+q) (pg-pi) = af(p{-pl) « 1/2{q =) (p{-p}) (14)
The two expressions follow ng the second equality in (14) represent the
famliar welfare rectangle and triangle measures of Marshallian surplus.

So, the |I.h.s. of (13) representing the partial measure FES ei t her
understates, overstates, or equals the approxi mate Marshallian consumer
surplus neasure on the r.h.s. depending upon whether the absolute value of
the arc price elasticity of demand for the good whose price has changed is

respectively less than, equal to, or greater than one.
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But from (13) and (14), there is obviously no reason to conmpute the
partial Harberger surplus measure HCS if qz, q{,p{ and p{ are all known or
if af» p;» q; and e are known, pernitting calculation of p; - In these
circunstances the approxi mation ¢S can be obtained directly by linearizing
the unknown demand function between p;,q; and p;,qi and applying (14).
O course the nmore nonlinear the demand function and the larger the price
change the poorer the quality of the approximation C5 to the correct
measure CS. More often, only p; and the quantity change are known and no
assunption is made about e; the welfare change being approximated instead
by Ldﬁ Only under unusual circunmstances will &N equal ¢S defined in
(14). For instance, assume the unknown demand function is of the |inear
f orm g=a- bp. Substitute this relation for the q; and q{ terns in (15)

defining the ratio of s to Lav to get (12):

OV = 14n0 o_nl 0f ~1_ 0
CS/LQV = W/2(qi*qi)(pi pi)/pi(qi qi) (15)
CB/LQV = (2a=b(p}+p?))/2pfh (16)

Si nce p; is exogenously given the function (1-CS/LQV) can be m nim zed

* . .
with respect to p!. The value p; whi ch sets (16) equal to one is

*

1 - 0

P! = (2a-3bp’)/b (17)
From (17) if the initial evaluation point pz,q; happens to be at the

point of unit elasticity of the unknown demand function so p; = 1/2 alb,

*
substitution into (17) reveals pi = p; = 1/2 alb. The practical relevance

of this first result is that if, by fortuitous accident, the initial point
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of evaluation is at or very close to unit elasticity and the price change
is small, the nmeasure LEN may not diverge overmuch fromCs, but will
deteriorate as p; beconmes increasingly distant fron1p§. Second (17)
suggests that even if p; Is not at the point of unit elasticity, there is a
p; (and by inplication a value of q; which sets (16) equal to 1. But
there is no guarantee that the ;;,3; combi nation from (17) will be in the
econom ¢ region (;3 could be negative) or, if it is, that the policy being
evaluated will throw up the ;;,3{ conbination that justifies the use of
Lé% Finally, when price changes are "snall", LEN, P@V and HCS will be
approxi mately equal, but, unless the underlying unknown demand function is
unit elastic over the region of change, none of themw || be good
approxi mations to cS.

In conclusion, it normally will not be possible to even conpute the
full LQ/, PQV or HCS measures in the participation equation version of
recreation benefits analysis, because changes in the consuner’s entire
consunption bundle remain unquantified. Wthout know edge of the demand
function, partial nmeasures are unlikely to be representative of even a
crude Marshallian consuners surplus measure of individual welfare changes,
unless the wutility function is such that unitary elasticity demand
functions result (eg: Cobb Douglas) or the price change happens to be in
the unit elastic region of an arbitrary demand function. Wi le these
condi tions salvage the HCS measure, if they are not net it is uncertain
whet her the sum of the unadjusted HCS measures across all individuals will
or will not be a useful aggregate. But, can anything be salvaged by using
an average willingness to pay unit value rather than a marginal one? The

answer, unfortunately, is not encouraging.
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Val uation with Average Unit Val ues

In the usual case, only a nmeasure CS of individual j's average surplus
for the quantity of recreation activity (usually dollars per day)
undertaken before a price change in activity i is available. In terms of
the demand expression (2) it may be witten as:

p——

TS = [YWP(q)dg/q° (18)
0

Under what circunmstances, then, is the follow ng approximtion for net
benefits a good one?

NB = TS(q'-q°) (19)

We previously exam ned this question theoretically, using a
representative consumer’s situation, for the sinplest inverse demand
function, a linear one, p = a + bg, and for a constant elasticity function
with elasticity n, p=&’"% /™ If the ratio q(a)/q(a’) is witten as
k, the follow ng expressions were obtained (see Vaughan and Russel|l 1982

for a full derivation):3

- NB . 11
|'i near demand: T <3 (20)
o NB _ . _ o ac -k -
cogg%%g% elasticity == (1 - mg ] L:j;TT:T7ET-J (21)
where NB is a Marshallian consuners surplus. In addition, if the demand

function is of the seni-logarithnic formq = exp (a+tbp), CS evaluated at q°
is -(q%b), where b < 0. This yields an average surplus CS of 1/b. It can

easily be shown that NB, the product of this average surplus and a quantity
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change given as exp(a) (exp(bp') - exp(bp’)) is exactly equivalent to the
Marshal lian consumers surplus neasure NB fromthe definite integral of
Ip:exp (a + bp)dp.

i Thus, if individual’s demand functions are all linear (or nearly
linear in the relevant range) the application of an average surplus always
understates the total Marshallian CS neasure of the welfare change by a
factor of at l|least 0.5. If the demand function is of the constant
elasticity sort, the approximation can either be correct, understate, or
overstate the individual’s surplus. Only when the denmand function is
sem -l ogarithmc does the procedure produce the correct result. So,
applying an average unit value to an aggregate quantity change is also
dangerous, with unknown risks a positive or negative valuation bias
dependi ng on the nature of the (unknown) demand function

These theoretical results may seem bloodl ess and unconvincing. So in
the next section some nunerical exanples are constructed which verify them

and give a concrete idea of just how wong the approximation can be

SOVE NUMERI CAL EXAMPLES OF THE VALUATI ON PROBLEM

This section begins with sone sinple nunerical exanples which assume
demand specifications with zero cross-price effects -- a constant unitary
elasticity specification g=100/p and linear specification q:25-p.4 Ve
dermonstrate the workings of the marginal and average wel fare measures
di scussed previously, and contrast their accuracy vis-a-vis the correct
Marshal I'ian measure, CS. Al of these results are easily calculated by the
reader and, by assunption, since no other goods quantities change in
response to the price/quantity change of interest, all partial index nunber

wel fare measure are exactly equivalent to their full counterparts (ie: LQV
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- LQV, PQV = PQV, and HCS = HCS).

Next, a nore conplex exanple based on an arbitrary paraneterization of
a quadratic utility function defined over four goods is introduced. In
that case, cross price effects are present so that full and partial index
number wel fare neasures are not equivalent. Solutions to this problem are
obtai ned by quadratic programmng nethods, and cannot easily be reproduced
by the reader. However, the message of the results is clear -- the two

step valuation method is generally very unreliable.

Zero Cross-Price Effect Exanpl es

Suppose arbitrarily that price-quantity data for a particular good
show variation froma nmaximum price of 25 to a mininumprice of 5 and that
the underlying demand functions generating the data are g-100/p and g-25-p
The average surplus neasures for each case are:5

Unit Elastic:

[*]

_ P
S = ((J 100/p dp)-p°q°®)/g°® = (100(1n100-1np°®)-100)/(100/p°).
100

= p® {in 100 - 1np®)-1]
where 100 is the price that sets q to one and ¢° is the quantity associated

6

with p°.” For the linear case:

Li near

o

—_— 2
CS = (] 25-pdp)/q°® = ((252-1/2 25%) - (25p°-1/2 p°® ))/(25-p°)
25

where 25 is the price that sets q to zero and ¢° is the quantity associated
with p’
For exanple’'s sake take three price change situations for each demand

specification; two "snall" price changes (one far renoved fromthe unit



3-20

elastic point of the linear function and one very close to it); and one
“large” change over the md-range of prices (one which validates the LCM
nmeasure).

First, suppose the base price is initially high so p’=20 and drops by
0.5 to p'=19.5 after the policy. The absolute value of the arc elasticity
of the linear function is 3.76 in this region. For this "small" price
change it is obvious that for both functions EQJ, PéJ and HC~S wll all be
approxi mately equal since there is little difference between the base and
post-policy marginal unit values p° and p' applied to the quantity change
These neasures can be conpared to the product T5-2q=NB, the appr oxi mation
¢s, and the true val ue bei ng sought, cS. 7 The results for this first case

are shown in table 3.1.

Table 3.1. Case 1: Small Price Change: Hgh Initial Price

Assuned: 0 = 10; p! = 19.5

Cal cul at ed: Li near demand Unitary elastic
q° 5.00 5.00
q' 5.50 5.13
True CS 2. 62 2.53
T3 2.50 12.18
LQV 10.30(3.82) 2 2.56(1.01)
PQUV 9.75(3.72) 2.50(0. 99)
HCS 9.88(3.77) 2.53(1.00)
s 2. 62(1.00) 2. 53(1. 00)
CS-aq 1. 25(0. 48) 1.56(0. 62)

a. Figures in parentheses are ratios of approximtions to true surpluses.

One inportant lesson of this exanple is that the LQv, PQV, HCS and SE

approximations all work quite well for the unit elastic case when the prize
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change is small, as expected, but fail rather dismally for the |inear
function because the point of evaluation p° q° is so far renoved fromthe
point of unit elasticity of this function (p=12.5, ¢=12.5). Thus, "small"
price changes, in and of themselves, do not guarantee approxination
accuracy using marginal unit values except in the case of unit elasticites.
The second | esson evident fromthe exanple is the especially poor
performance of the product of an average surplus and the quantity change,
as expected fromEqg.'s 20 and 21.

Next, the same cal culations can be made in the nei ghborhood of the
unit elastic point of the linear function. (Table 3.2) Here, all
approxi mati ons except the average unit value method work very well, again
as expect ed. Even the average value nmethod is fairly good for the unit

elastic demand function, though it still fails for the linear case.

Table 3.2. Case 2. Small Price Change in
Nei ghbor hood of Unit Elastic Point

Assumed: p° = 12.75; p' = 12.25

Cal cul at ed: Li near denand Unitary elastic demand
9 12.25 7.84
q, 12.75 8.16
True CS 6. 25 4.00
cs 6.12 13.51
LQV 6.37(1.02)2 4.08(1.02)
PQV 6. 13(0. 98) 3.92(0.98)
HCS 6. 25( 1. 00) 4.00( 1. 00)
cs 6. 25(1. 00) 4.00( 1. 00)
TS-4aq 3.06(0. 49) 4.32(1.00)

a. Figures in parentheses are ratios of approximtions to true surplus.
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Now, for large price changes, suppose p°=15. | f LEM is to be
*
equivalent to €S, in the linear case, this inplies a p! = p* of 5. The

results are given in table 3.3.

Table 3.3. Case 3. Large Price Change for which LQV=CS
by Construction for Linear Denmand Rel ation

Assumed: p° = 15; p' =5

Cal cul at ed Li near denmand Unitary elastic demand
T, 10. 00 6.67
q, 20. 00 20. 00
True CS 150. 00 109. 86
cs 5.00 13. 45
LQV 150. 00( 1. 00) & 199. 95(1. 82)
PQV 50. 00( 0. 33) 66. 65(0. 61)
HCS 100. 00( 0. 67) 133.20(1.21)
cs 150. 00( 1. 00) 133.20(1.21)
TS-Aq 50. 00( 0. 33) 179. 28(1. 63)

a. Figures in parentheses are ratios of approximations to true surpluses.

Because the price change is non-marginal none of the approximations perform
well if the true denmand curve is unit elastic. Particularly, the
linearization C3 overstates the true surplus CS. For the linear case a
good result in terns of LQV = ¢S = CS has been guaranteed by construction

and not nuch can be said here except that Ffé diverges from CS by a factor
of 0.67, which is the arc elasticity of the linear schedul e. (It is
interesting to note that if the same |large price change of $10 is initiated
at p’=1 instead of 15, this mnor alteration of the Case 3 initial

conditions breaks the equality of Léd and CS in the linear case.)
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Al'l of the above exanples can be worked out on a hand cal cul ator, but
we next nove on to a nore conplex (quadratic) formulation of the utility
function. Wil e the nunerical solution of the consuner's utility
maxi m zation problemin different price situations requires an optimnzation
algorithm the lessons regarding the questionable useful ness of the various

i ndex nunber approxi mations remain the same.

A Quadratic Wility Function Exanple

A useful specification of the consumer’s wutility function which
provi des for zero consunption of sane goods in the choice set independent
of whether the Lancaster fornulation of the household nodel holds is the
guadratic (Pollak, 1971, Wgge 1968). It has received serious
consideration in an applied context by Wales and Wodl and (1983) and
reflecting on its didactic value, \Wegge 1968 observed "... because of the
fact that inferior and superior commodities, substitutes and conplenents,
and zero consunption can be allowed for, a quadratic utility indicator
seens to be one of the sinplest exanples which can be used to denonstrate
nunerically the flexibility of narket behavior perm ssible under the
assunption of rational behavior” (p. 222).

Adopting the additive quadratic formfor the utility function8 and a
standard neocl assical structure to the problem assune three recreationa
activities and a Hicksian conposite commodity are in the consumer’s choice
set. Incone is exogenously determned, and units of consunption of al
three leisure activities are measured in days with a total leisure time
constraint of 125 days. The consunmer's optimal choice set can be

determ ned by solving the nonlinear programmng problem
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Max U = u(Qq)
S.t. y 2 pq
q =20
*
qQq 2T

where pis a 1 by 4 row vector of market goods prices, gis a 4 by 1 colum
vector of quantities with the Hi cksian good in the last position and y is a
scal ar representing income. For the time constraint, T equals 125 and 3 IS
a 3 by 1 colum vector of recreation good quantities (days) and & is a 3 by
1 colum vector of 1s.

Figure 3.2 displays typical Mrshallian demand schedules for the first
activity (call it fishing), at different levels of incone, fixing p, p;
and p, at 1, 10, and 1 respectively. (To solve the consuner’s problem we
used Lenpke’ s conplenentary pivot algorithm (Ravindran 1972).) It is
interesting to note that although we m ght expect nonlinear schedul es
(Pol I ak 1971)9 our demand curves are very nearly linear, suggesting that
valuation of a quantity change by an average surplus dollar value will |ead
to underestimation of the welfare change if a single price changes.

This is indeed the case. In table 3.4 we show the optimal solutions
to the programm ng problem across different income levels for two policy
scenari 0s. The first scenario (l) operates in the high-price |ow quantity
region of the good 1 demand curve, |owering p;, froma pre-policy |level of
$13 per day to a post-policy level of $8 with all other prices fixed. The
second scenario (ll) starts at a pre-policy price of $7, for good 1
reducing it to $2.

Wiile table 3.4 is not particularly interesting in itself, it does
denonstrate the zero consunption phenonenon (for good 1 and good 3). Good

2 is an inferior good over all incomes for both price sets, and good 1 is
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Table 3.4. Optinal

Consunption Bundl es

Pol i cy Fi shi ng Passi ve Canpi ng Conposite Arc Quantity Aver age
Scenari o: Days Days Days Commodi ty Elasticity Change, Sur pl us,
Income  (p,) (a,) () (d;) (q) o f Demand(qy) g, Good 1(C9)
5000
PRE 13 0 119.3 5.7 4823. 4
I-post 8§ 10.2 105.9 0 4740.9 4.20 19.15 0
PRE 7 42 100. 8 0 4729.9
He.pogr 2 49.4 75.6 0 4825, 6 0.61 25.21 2.29
10,000
PRE 13 0 113.8 11.2 9774.3
L. post a 231 101.9 0 9713. 2 4.20 23.12 0
PRE 7 216 97.4 0 9709. 5
1 post 2 500 75.0 0 9825. 0 0.52 22.38 2.62
15,000
PRE 13 0 108. 4 16.6 14725.2
*POST 8§ 26.2 97.2 16 14677. 0 4.20 26.22 0
PRE 1 30 94.0 0 14689. 1
1L post 2 505 74.5 0 14824. 5 0.43 19.53 2.91
20,000
~ PRE 3 37 101. 3 19.9 19650. 7
L-post 8 277 911 6.2 19625. 2 3.20 23.98 0.39
PRE 7 325 89.0 3.5 19648. 6
1. post ) BL1 739 0 19823.9 0.40 18.57 3.39
25,000
’ PRE 3 9.2 93.6 22.2 24564. 3
*POST 8 202 850 10.8 24573. 3 2.18 19.97 L1
PRE 7 332 83.2 8.5 24598. 9
H.post 2 517 73.3 0 248233 0.39 18.44 4.17
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Table 3.4 (continued)

Policy Fishing Passive Camping Composite Arc Quantity Average
Scenario: Days Days Days Commodity Elasticity Change, Surplus,
Income (Py) (d;) (ay) (a3) (dy) of Demand(q,) 4, Good 1(CS)
30,000 I PRE 13 14.8 85.8 225 29477.0 1.48 15.97 2134
*POST 8 30.7 78.9 15.4 29521.5 ' ’ '
PRE 7 33.9 77.5 13.6 24549.2
I1- post 2 496 70.5 4.8 29781.7 0.34 15.74 534
35,000 pre 13 203 78.0 26.7 34391.3 0.96 11.96 429
‘pPOST 8 32.2 72.8 20.0 34469.7 ‘ ' '
PRE 7 34.6 71.8 18.6 34499.5
0.26 11.70 7.
II'POS'!‘ 2 46.3 66.5 12.2 34710.9 31
40,000 pr 13 258 70.2 29.0 39304.9 0.56 795 8.27
*POST 8 33.7 66.7 24.6 39417.8 ‘ ’ '
PRE 7 35.3 66.0 23.1 39449.9 0.18 7.67 11.32

1. post 2 43.0 62.5 196 39656.1

Le=¢
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inferior for income |evels beyond $15,000 under price set II. The arc
elasticities of demand for good 1 show that scenario | is confined
principally to the elastic region of each inconme-specific demand curve, and
scenario Il to the inelastic region. The final two colums of table 3.4
contain the information necessary to conpute a benefit measure using an
average surplus unit val ue. 10

In table 3.5 conpensating and equivalent variation (CV, EV) along with
all of the individual-specific benefit measures discussed previously are
di spl ayed for representative consuners, who are distingui shed by incone
|l evel s and price sets.11 Three inportant features of this table illustrate
our previous theoretical results:

(1) Good 1 takes a small share of total expenditure, has a |ow inconme
elasticity, and a true demand curve that is nearly linear. So,
the Marshallian surplus approximtion ¢S is closely bracketed by
CV and EV, as expected fromWIlig, 1976.

(2) The relationship between the partial Harberger neasure HéS and the
Marshal |ian measure CS i's i ndeed proportional to the arc price
elasticity, as expected from Eq. (13) above. For exanple, in the
first rowof table 3.5 HCSis $201.08. Wth an arc elasticity of
4.2 fromtable 3.4, the Marshallian neasure fromEq. (13) is
201.08/4.2=47.88, in this case exactly equal to the value reported
in colum 1, conputed independently using Eq. (12).

(3) The neasure ﬁﬁi obt ai ned by applying an average surplus to the
quantity change understates the true welfare neasure CV by nore
than hal f, as expected fromEq. 16.

Table 3.6 shows what happens in the aggregate if the exanple

popul ati on of 16 consumers (8 inconme levels by 2 price scenarios) is



Table 3.5. Individual-Specific Monetary Welfare Change Measures

Approximate
Marshallian

and full Har- Partial Partial Partial Average Compensating Equivalent
Income and berger Surplus Laspeyres Paasche Harberger Surplus Vnriatiog Variatiog
Policy Scenario 168, HCS) (LQV) (PQV) (HCS) (NB) (cv) (EV)
500
| 47.88 248.35 153.20 201.08 0 33.46 33.72
11 383.93 176.47 50.42 113.44 57.73 183.84 184.22
10,000
| 57.80 300.56 185.04 242.76 0 46.81 47.14
11 193.85 156.66 44.76 100.71 58.64 193.75 194.11
15,000
| 65.55 340.86 209.76 275.31 0 60.99 61.68
11 203.78 136.71 39.06 87.86 56.83 203.65 204.10
20,000
| 70.65 311.74 191.84 251.79 9.35 70.20 79.05
11 204.02 129.90 37.14 83.56 62.95 212.34 212.57
25,000
1 96.18 259.61 159.76 209.68 23.36 95.71 96.63
11 212.20 115.08 32.88 73.90 613.55 214.86 215.03
30,000
1 113.68 207.61 127.76 167.68 37.37 113.29 114.16
11 208.90 110.18 31.48 70.83 84.05 209.34 208.92
35,000
| 131.20 155.48 95.68 125.58 51.31 131.00 131.60
11 202.25 81.90 23.40 52.65 85.53 202.39 202.59
40,000
| 148.72 103.35 63.60 83.48 65.75 148.54 149.20
11 195.62 53.69 15.34 34.52 86.82 196.02 195.71
Notes:
a. All measures theoretically have negative signs for a Welfare improvement, but are reported as absolute values here.
b. From Golden Section Search, with an interval of numerical uncertainty of $0.01. In general |CV] < |EV], except where

good 1 is inferior.
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Table 3.6. Aggregate Monetary Welfare Change Measures by Income Group and Price Scenario

Low Price High Price Low Price High Price
Welfare Measure (S) Scenario Scenario 1 Scenario Scenario |
Compensating Variation, CV 794 217 830 488
(1.00) (1.00) (1.00) (1.00)
Marshallian and Full Harbergerb 791 250 819 490
Surplus (8, HCS) (0.996) (1.152) (0.987) 1.004
Partial Harberger Surplus (HC3) 386 971 232 586
(0.486) (4.475) (0.280) (1.201)
Partial Laspeyres (L'QV)C 600 1202 361 726
(0.756) (5.539) (0.435) (1.488)
Partial Paasche (PgV) 171 740 103 447
(0.215) (3.410) (0.124) (0.916)
Average Surplus (NB)19 86 36 363 224
(0.108) (0.166) (0.437) (0.459)
Notes:
a. Incomes below median of 22,500 in low income group, incomes above median in high Income group.
b. See Eq. (10) in text.
c. Calculated using only aq, ignoring other quantity changes.
d. See Eg. (14) in text. Group-specific average surpluses, obtained as the mean of the individual

in each group, applied to the group-specific total

(Ratios to CV in parentheses)

a
Low Income Group

. a
High Income Group

guantity change.

Row
Total

2329
(1.00)

2350
(1.009)

2175
(0.934)

2889
(1.240)

1461
(0.627)

933
to.4011

average SUI’p'USES

0£-¢
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partitioned into 4 roughly honogenous, equal sanple groups, and group-tota
wel fare measures conputed separately for each group and summed. The groups
are cross classified by income (less than or greater than 22,500) and price
scenario (I, 11). So doing arranges individuals in cells in ascending

order according to group average arc price elasticity of denmand:

| ncome
Price Low High
Low 0.49 0.29
High 3.95 1.30

The patterns of under or overstatement in each colum of table 3.6 are
consistent with what we woul d expect fromthe theoretical devel opnent, with
one exception. That is, while the N3 neasure al ways under st ates
individually and in the aggregate, the HCS neasur e may come quite close to

12 But this can only happen by fortuitous accident,

a proper welfare total
with individuals neatly arrayed across initial and post policy price |levels
and income levels such that overstatements counterbal ance understatenents
over all.

Sunming up, the two step valuation route is dictated by the lack of
accurate data on individual marginal wllingness to pay for the spectrum of
recreation activities. If surveys of population recreation participation
contained individual-specific marginal wllingness to pay information for

potential (as opposed to actually undertaken) visits to all available sites

for all leisure related purposes, the two step approach would be
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unnecessary. Instead, the welfare change could be obtained directly as the
change in the area behind the estimted conpensated (or Marshallian)
uncondi tional demand function for visits of a particular sort (Bockstae
and McConnel | 1983, Morey 1983) just as we would do with a marketed good.
But when such price data are not available on an individual-specific |evel
prices cannot be used in estimation. Instead group average unit val ues,
whi ch are perhaps prices but nost likely are not, have to be found to
arbitrarily value a quantity change, however estinated.
MODEL SPECI FI CATION: THE ROLE OF WATER RESOURCE AVAI LABI LI TY AND POLLUTI ON
VARI ABLES | N RECREATI ON PARTI CI PATI ON EQUATI ONS

When unit-day values are used to nonetize quantity (days) changes
predicted from an econonmetric recreation participation nmodel under a
scenario of recreation resource enhancenent, the resultant benefit neasure
is likely to be inaccurate, no matter how accurate the prediction of
quantity change. But prediction accuracy is another fundamental problem
with the macro participation equation approach antecedent to, and perhaps
as inportant as, the issue of valuation.

In the case of water pollution control, water resource enhancenent is
presunmed to bring about an augnentation in the quantity of water "suitable"
for the activity, decrease the expected congestion at and cost of travel to
“suitable” water, and to thereby stinulate an increase in days of
participation. Wiile this chain of reasoning seens plausible it is not
uni versal ly accepted. The counter argunent is that since such a smal
fraction of currently available water can be |abelled “unsuitable”,
mar gi nal i nmprovements may, except for localized situations, have an
i mperceptible inpact on participation costs or congestion, and hence on

aggregate participation intensity in some pollution-insensitive pursuits
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(eg. boating). A nore sophisticated version of this counter-argunent is
that macro cross-sectional participation nodels are an inappropriate
instrument for identifying pollution inpacts. While there may be sane
state level cross sectional variation in the fraction of surface water
acreage which is is "unsuitable" for participation, such a neasure, being
neasured too broadly, may not be relevant to individual decision makers.

Rat her, the physical and chemical characteristics of particular water
bodies may wel | be the appropriate quality attributes influencing choice

And, even if a broad state-level aggregate measure of pollution is relevant
to individuals, observed pollution Ievels in any national cross-section my
be everywhere bel ow the threshold | evel s which affects the perceived
utility of a particular kind of recreation experience. In this case, no
dermonstrable effect will be revealed in an applied econonetric analysis.

VWiile the (negative) effect of pollution levels on the probability and
intensity of participation in all kinds of water-based recreation is hardly
a universally accepted doctrine, it has been an inplicitly maintained
hypothesis in many enpirical investigations, dating back to the 1966 study
by Davidson, Adanms and Seneca. Again, just as in the valuation case, the
reason perhaps can be attributed to a paucity of data, rather than a
deliberate attenpt to guarantee positive benefits of water quality
| mprovenents.

To denonstrate how this situation arises, let us assume a |inear
specification of the participation response function y=f(+), and represent
freshwater availability as Q distance to the nearest marine or Geat Lakes
coastline as D, the fraction of freshwater area polluted and therefore
unsuitable as P_; the fraction of marine water polluted as Py, and let all

Q
other influences on the response (y) be collapsed for sinplicity into an
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augmented intercept, K. Then the participation response function in the
general model, ignoring the error specification, is, for individual i:

i =K+ Bi(Q) + 8,(Q Py ) + By(Dy) + BU(D oPy) (22)
where B, > 0, B,, B3, B8,<0. In this representation marine pollution can
increase the expected distance of travel to any marine or Great Lakes
recreation destination or, otherwise said, the travel-associated cost of
participation there. Similarly, freshwater pollution may withdraw
freshwater acreage from the perceived pool of available acreage and reduce
participation. The extent to which these two pollution effects are
perceived and acted upon by the recreationist depends on the magnitude and
significance of the parameter estimates of 8, and 8, in the econometric
model. But that the model in (22) represents a neutral view of the role of
pollution, regarding it as a hypothesis that can be tested statistically.

If the investigator happens to be sympathetic to the skeptical view
that pollution may have no perceptible influence on participation, the null
hypotheses of his restricted model would be §,=8.=0. If these restrictions
cannot be rejected, the implication is that water pollution reductions are
unlikely to produce any direct benefits, although option and existence
value benefits, which are not captured by the participation model, cannot
be ruled out.

Interestingly enough, tests of this sort are uncommon. Rather, the
standard procedure is to posit, as a maintained (i.e., untested,
hypothesis, that g,=-8,, and 8,=8,. Then, by construction, marine distance
is augmented and freshwater acreage reduced by the appropriate pollution

fractions prior to estimation, yielding a decidedly "environmentalist”

model specification:
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Yi *© Ki + 8, (QI (l_PQi ) + B (Di (1+PMi ) (23)
where 8, > 0, 8, < 0. Here, if the parameter estimates of either 8,,8, or
both are statistically significant, the conclusion that positive benefits
will be forthcoming from pollution reductions is inevitable, but perhaps
unjustified. 13

What is one man’s reason is another’'s folly, and unfortunately,
statistical criteria cannot always distinguish the two. Because both the
skeptical and environmentalist models are restricted versions of the full
model in (22) they can be tested separately against it. But, they cannot
easily be tested against each other because they are non-nested. So
restrictions of the null hypotheses of both of the restricted models may
not be rejected in separate tests against the full model. The conundrum
raised by the possibility of two plausible but non-nested narrow models is
in general irreconcilable, and even if sophisticated non-nested hypotheses
testing procedures are undertaken, they may not produce a clear cut
decision. While the narrow model with the highest likelihood function
value can be taken to represent the preferred specification (Amemiya 1981),
this model discrimination criterion (variously labelled the Sargan test or
Akaike’s Information Criterion) is not really a statistical test with Known
properties. Rather, it should be successful “on average” presuming one of
the models in the comparison set is indeed the true model.

Realistically, the quality of pollution information obtainable from
surveys (as in appendix A to chapter below) that ask environmental
officials questions like “In your state, what fraction of total freshwater
surface acreage is unsuitable for activity X due to pollution?” may be too
poor to support hypothesis tests of parameter restrictions. 14 If the state

cross sectional series on the percentage of water polluted borders on
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random noise, or if the overall average has some meaning but across-state
differences do not, there is simply not enough information in the pollution
data to lead to rejection of the restrictions of either the skeptic or the
environmentalist models vis-a-vis the full model. In such a situation,
which in our view is commonplace, meaningful tests of the role of pollution
In recreation participation models are not possible. Thus it is not
surprising that the restrictions of the environmentalist model are
maintained hypotheses in many water pollution control benefit studies,
especially when those who commission the study, those who undertake it, or

both, presume such benefits exist.

SUMMARY AND CONCLUSION

There are several sources of possible error in using the conventional
two-step "macro" participation method for approximating a welfare change
due to recreational resource enhancement:

(1) Mis-prediction of the change in the quantity demanded due to the
policy, as a result of using availability proxies for either price
or site attributes (previous chapter).

(2) Error in valuation due to use of either a marginal unit value or
an average surplus.

(3) Acceptance of a benefit-producing relationship without testing
against a more skeptical null hypothesis.

These problems do not inspire confidence in the two-step method of

welfare analysis employed using conventional participation equation models.

Beyond these issues is that of which estimator is most appropriate.

This is the subject of the next chapter, which explains why several

alternative limited dependent variable estimators are logical candidates
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for the estimation of recreation participation models, and why it is often
difficult to prefer any one of them over the others.

After this review the estimators are applied to recreation survey data
to produce recreation participation models incorporating pollution effects
for fishing, and swimming. In those participation equation applications,
the restrictions of the environmentalist model are maintained hypotheses,
and the benefits of pollution control so produced must be considered with
that caveat in mind.

Two separate chapters are then devoted to a slightly different
approach to water quality benefit estimation which does not explicitly use
the participation equation construct, and there we do test the
environmentalist hypothesis. In those chapters we attempt to capture the
potential benefits of water quality improvement accruing to the boating
category of recreation via the estimated demand for the durable good (the
boat) in a first step along with the estimated demand for the activity
service flow (boating days) in a second step. The ambiguous results of the
environmentalist versus full model hypothesis tests in those chapters
suggest the futility of pursuing a similar exercise in participation

equation estimation.
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NOTES

1. Some studies (USDI 1973) have used “trip costs” constructed from
population survey information in participation equation estimation. If an
unconditional demand function specification is intended, trip costs must be
collected on all sites and all possible recreation activities every
consumer can choose among. It is doubtful that trip costs variables
constructed by averaging over several trips to many sites in one particular
activity category are adequate, and the problem of missing substitute
activity costs because participation in such substitute pursuits is zero is
usually impossible to overcome. An exception is the work of Morey 1981,
1983 who estimates conditional demand functions.

2. A cursory reading of Deyak and Smith 1978, in both the theoretical and
applied sections, leaves the impression that direct travel expenses play no
role in reduced form participation models desired from household production
theory. However, such an interpretation is apparently incorrect, since
Deyak and Smith specify the marginal cost (shadow price) of service flows
as a function of the prices of “recreational market goods” which presumably
should include travel cost as a measure of “site price”, although they do
not so state.

Notably, the empirical analysis in Deyak and Smith includes no such
measure or proxy for it, focusing instead on congestion-type variables
measured as the acres of recreational facilities per capita. Thus, their
econometric model specification appears to be distinct from their
theoretical model. Our previous work, which followed Deyak and Smith's

empirical (not theoretical) specification appears deficient in this regard
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(Vaughan and Russell 1982) as are several other empirical analyses of
recreation participation in the literature.

The omission has rarely been explicitly addressed until recently, when
Mendelsohn and Brown 1983 observed “In order to assess the usefulness of
the household production function it is important to remember that the
fundamental purpose of recreation analysis is to determine the value of the
guality and quantity of the public good, the recreation site. The
recreation site is a good which enters like other goods as an input into
the household production function. The critical issue is to value the site
or its objective qualities in terms of the price of the site or the price
of each quality.... Although the household production function may be able
to provide insights about why people exhibit certain tastes for goods
(sites) the tool is an unnecessarily cumbersome approach to measure the
value of sites or their qualities” (pp. 610-611).

3. When the constant elasticity demand curve exhibits unitary elasticity
formula (17) is indeterminate. But the limit of NB/NB as n approaches one
can be calculated by L'H;pital's rule as (k-1) (1-Inq)/(-Ink).

4. The constant unit elastic demand specification is theoretically
consistent with a Cobb-Douglas utility function. In this case the share of
total income allocated to the good in question is a constant as is the
dollar amount spent on it, irrespective of price, since the product of
price and quantity is a constant. The linear specification can be regarded
as an arbitrary first order approximation to the constant unit-elastic
function.

5. The unit elastic formula is derived in Varian 1978, p. 213.

6. For a derivation of this formula see Vaughan and Russell 1982.
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7. All formulas used for these computations are reported elsewhere in the
text, except for CS which in the unit elastic case is Ig{illoolpdp = 100
(Inp,-Inp,). In the linear case ¢S is equal to CS.
8. The additive quadratic utility function is not both globally
quasiconcave and nondecreasing, so a satiation point (bliss) can be
reached, marginal utility can be negative, and the own Slutsky substitution
effects can become positive (compensated demand curves can become upward
sloping beyond bliss). Yet the additive quadratic utility function is
qguasisconcave and nondecreasing over a subset of the commodity space--the
region southwest of bliss--which is the region of the "economic" problem of
choice. The additive form of the general quadratic utility function,
useful for didactic purposes, is defined (Pollak 1971)
U@ = - 2, (dj-qj)’

where C; and d; are positive parameters. The cardinal properties of the
additive quadratic (Philips 1974) are linear marginal utilities
(aU/aqi = 2¢;d; - 2¢;q;) which can become negative for sufficiently large
g ; diminishing marginal utility (= -2a;) and independence
( azuxaqiaqj = 0).

The parameter values used in the example are c¢; =1 for all i and
d;=182, d, = 183, d, = 204 and d, = 49,000.
9. The demand curves derived by Pollak 1971 are inherently nonlinear and
convex to the origin while the demand curves from the programming solution
in Wegge 1968 and our results are piecewise linear and concave to the
origin. The discrepancy arises because Pollak 1971 ignored the
non-negativity quantity constraint and derived the demand curves using
standard Lagrangian techniques while the programming solution reflects the

operation of the inequality and non-negativity constraints.
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10. The individual-specific average value column mimics the response
elicted in the 1975 National Survey of Hunting, Fishing and
Wildlife-Associated Recreation, which asked “Having thought about how much

this activity cost you in 1975, how much more money would you spend

annually on your favorite activity before deciding to stop doing it because
it is too expensive?” In our model, this value is captured as the average
of the equivalent and compensating variations between the base level of
participation in fishing and the zero level divided by the base level days
of fishing.
11. Policy benefits can be calculated both in compensating variation (CV)
and equivalent variation (EV) terms. (Deaton and Muellbauer 1980). Define
eV = e(phu®) - e(p°u?)
EvV

e(p’,u’) - e(P°u?)
where e(+) represents the minimal expenditure required to reach the stated
utility level, given the price vector. Obviously, e(p°u® = e(p'u?) =y°
if the consumer’s income constraint is binding (he is not beyond bliss).
To obtain the correct EV and CV measures, the quadratic programming
model must be resolved (parameterized) in steps away from either the pre or
post policy solution, where the parameterization involves decrements (for
CV) or increments (for EV) in the income available below or above y°. This
is necessary because the expenditure function cannot be derived
analytically. Instead, a Golden Section search algorithm (Biles and Swain
1980) was employed to find CV and EV numerically.  Specifically, the
problem for CV is to find (by numerical search) the income level y;<y°
that, under price vector p*, allows the consumer to obtain the optimal
pre-policy utility level u® with income y°. Of course, u’ is known from

*
the pre-policy optimization run with price vector p’. ThenCV=y_-y°.
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The logic for the EV calculation is similar. All welfare measures are
reported as absolute values.
12. Table 3.5 uses an individual-specific average surplus, C_si. Whether
or not total benefits over all individuals differ much if individual
changes are valued with an individual value TSt and summed or the total
quanity change is valued using an average of the average unit values CS
depends on the correlation between changes in quantities and TSt If the
correlation is positive use of TS' instead of T3 produces a lower total
welfare change, and vice versa if the correlation is negative.
13. See Vaughan and Russell 1982 for an example of this sort of
specification, which was invoked without scrutiny following Davidson, Adams
and Seneca 1966.
14. For example, state officials were asked this sort of question
regarding the percentage of fishable water by Vaughan and Russell 1982.
That study also employed a mathematical water quality simulation model
along with rules translating the water quality model's ambient water
quality measures into fishable water to predict the latter as a fraction of
total freshwater. The unweighted coefficient of determination between the

survey series and the synthetic series was only 0.31, and when data were

weighted by acreage, it dropped to a disappointing 0.08.
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Chapter 4
ESTIMATION OF QUALITATIVE AND LIMITED
DEPENDENT VARIABLE MODELS

In this chapter we discuss some problems that arise in the econometric
estimation of participation  models. This material may be considered as
complementary to that in chapter 3 on model specification. The treatment
will be quite detailed but even so will only brush the surface of a rich
and rapidly growing literature.

However, several high quality surveys are available for the reader who
wishes to pursue the matter more deeply. The 1981 and 1984 surveys by
Amemiya are excellent overviews of qualitative and limited dependent
variable  models, respectively, and the 1983 monograph by Maddala provides
broad coverage in both these areas. The often-cited 1981 volume edited by
Manski and McFadden is also an excellent survey of topics in qualitative
and limited dependent variable estimation.

Some definitional preliminaries are appropriate here. First, standard
practice is followed and random variables represented in upper-case
notation, their realizations in lower-case. Second, the terms “censored
distribution” and “truncated distribution” will be used with considerable
frequency. The introduction to chapter 6 of Maddala (1983) provides a good
heuristic explanation of censoring and truncation as they pertain to the
normal econometric model. For completeness, we present two more formal
explanations of these two phenomena as found in the statistical literature.

First, Kendall and Stuart (1973) describe truncation and censoring as
follows, wusing their now-classic “target” example:

Suppose first that the wunderlying variate x simply cannot be

observed in part or parts of its range. For example, if x is the
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distance from the centre of a vertical circular target of fixed
radius R on a shooting range, we can only observe x for shots
actually hitting the target. If we have no knowledge of how many
shots were fired at the target (say, n) we simply have to accept
the m values of x observed on the target as coming from a
distribution ranging from 0 to R. We then say that the
distribution of x is truncated on the right at R. Similarly, if
we define y in this example as the distance of a shot from the
vertical line through the centre of the target, y may range from
-R to +R and its distribution is doubly truncated. Similarly, we
may have a variate truncated on the left (e.g. if observations
below a certain value are not recorded). Generally, a variate
may be multiply truncated in several parts of its range
simultaneously. A truncated variate differs in no essential way
from any other but it is treated separately because its
distribution is generated by an underlying untruncated variable,
which may be of familiar form.

On the other hand... suppose that we know how many shots were
fired at the target. We still only observe m values of x, all
between 0 and R inclusive, but we know that n-m = r further
values of x exist, and that these will exceed R. In other words,
we have observed the first m order-statistics X(l) ""’X(m) in a
sample of size n. The sample of x is now said to be censored on
the right at R. (Censoring is a property of the sample whereas
truncation is a property of the distribution.) Similarly, we may
have censoring on the left (e.g. in measuring the response to a

certain stimulus, a certain minimum response may be necessary in
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order that measurement is possible at all) and double censoring,

where the lowest ry and the highest r, of a sample of size n are

not observed, only the m=n-(ry+ry) being available for estimation

purposes. (Kendall and Stuart (1973), p. 541).

A second explanation is that of Johnson and Kotz (1969), who note
that:

There is <clearly a close analogy between censoring and

truncation, but the differences are evident. Censoring modifies

the selection of the random variables; truncation directly

modifies the distribution. In other words, censoring is an

agreement to ignore observed values because they are larger (or

smaller) than a certain number of other observed values, while

truncation is omission of values outside predetermined, fixed,

limits. (Johnson and Kotz (1969), p. 27).

It should also be noted at the outset that the following discussion of

estimation techniques for quantitative dependent variables (e.g. measures

like time, days, number of trips, etc.) does not deal with the system or
multi-activity structure in terms of which recreation participation models
might be cast. That is, one can easily conceive of a system of recreation
participation models (fishing, boating, swimming) analogous to more
familiar systems of demand equations (food, drink, shelter, and clothing,
for example) discussed in the econometrics literature and estimated by
techniques such as seemingly unrelated regressions. However, although
there exist systems estimation techniques for limited dependent variable
models of the nature assessed below (see, e.g., Wales and Woodland (1983)),
such techniques are expensive and not easily implemented. Estimation

techniques for the single-equation or single-activity models discussed in
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this chapter are far more easily and relatively less expensively
implemented, and, as such, the discussion to follow is confined to those
models that can reasonably be estimated within the scope of this project.

We also elect to set aside for future research consideration of models
of the sort discussed by Dubin and McFadden (1984) and Hanemann (1984),
these concerned in part with situations wherein individuals select one good
or activity from a set of k possible goods or activities. Although such
research has potentially fruitful applications in the analysis of
recreation participation decisions, full treatment is beyond the scope of
this chapter.

The plan for the remainder of this chapter is as follows. First, we
briefly assess problems associated with least squares estimation of
participation models. Then we turn to a discussion of some techniques that
might be considered more or less appropriate for the estimation problems
attendant to recreation participation analysis. Following this we turn to
a discussion of prediction based on the estimation of the various models.

A summary concludes the chapter.

SOME PROBLEMS WITH LEAST-SQUARES ESTIMATION OF PARTICIPATION

The data used in participation analysis commonly displays one or more
properties that make simple least squares inappropriate, because the
resulting parameter estimates are biased and inconsistent, The alternative
techniques usually involve iteration and are more costly than the simple,
familiar methods. To see the origins of the problems consider the
multivariate linear model:
Y. = X;B + € where i indexes observations D)

and € has zero mean and constant finite variance ¢*. The model satisfies
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full ideal conditions (Schmidt p. 2) when:
i) X is a nonstochastic matrix of rank k<T, and has the property that

Q= lim X'X/T is finite and nonsingular;
T>w

i) e=iei] is distributed multivariate N(O, ole).

But whether or not ¢ is distributed normally, it can be shown that the OLS
estimatorAB:(X'X)'lX'y is unbiased and consistent.

As discussed in detail below, a very general characterization of
quantitative participation data is that it is data bounded from below by
zero, i.e. it is realized only in nonnegative quantities. Of specific
concern here are measures like “amount of time spent engaged in some
activity.” Such measures are generally modeled econometrically as the
censored or truncated counterparts of normally-distributed latent random
variables Yz having E(Yj) = X, 6, Var(Y;) = o*. However, if the
realizations of Yi are censored from below at zero, we have

E(Y%lv:>o> =X, B+ 00, /8., (2)

E(Yi) = ¥, 8¢i *oey,
where o and <I>i are the standard normal density and distribution functions

evaluated at (X,8/¢c; Lin the truncated case, where Pr(yil>0) =1,
*\
1’

The problems inherent in least squares estimation may be explained

E(Y 7 = X6+ 09, /%, . (3)

using these expectations. E(oq‘)i/@i) # C, then E(ei)é 0 so that e is
defined as the difference between either E(Yi) or E(Yilyi>0) and Xis in
(2). Thus least squares regression of y on X will yield inconsistent
estimates of 8, because the null error expectation assumption has been
violated. (Heckman (1976) provides a good general discussion of such

problems.)
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Although not all measures of interest in our analysis are cast in
terms of normally-distributed, partially-observed, random variables, these
constitute the main realm of our inquiry. In the other cases we shall
investigate, however, there are other characteristics of the data or
statistical distributions assumed that render least squares inappropriate,
given the objective of consistent parameter estimation. For example,
least-squares estimation strategy is generally completely inappropriate
when outcomes are qualitative, as no objective function of interest can be
cast in terms of linear expectations functions like those above. We now
turn to an assessment of various approaches to the estimation of

participation models.

TOBIT PARTICIPATION MODELS

A logical starting point in any discussion of limited dependent
variable model estimation is the basic Tobit model. The nature of several
of the participation measures of interest in the micro data sets being
analyzed in this study is such that Tobit estimation would seem--at least
at first blush--to be a sensible approach.

Tobit estimation has been utilized in a variety of areas in applied
microeconomics, ranging from labor supply (see the excellent survey by
Killingsworth (1983)), to health economics (Ostro, (1983)), to commodity
demands or expenditures (Tobin (1957), Pitt (1983)), and many others (see
Amemiya (1984) for an extensive bibliography).

The basic idea underlying Tobit estimation is that one posits the
existence of (latent) normally, independently-distributed (NID) random
variables Yi; - NID(X; B, 0%). In many interpretations of the Tobit model,

*
the Y., are stochastic indicators of intensity of desire for undertaking
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some activity. Owing to the nature of the activity, however, some
realizations of the Yz are censored while for the others, the intensities,
are mapped directly into actual undertakings of the activity. Some
threshold, in effect, is crossed such that the activities are actually
undertaken. For example, the fundamental idea behind Tobin's seminal paper
is that the Yt represent intensities of desire to purchase consumer
durables. When certain (assumed known) thresholds are crossed, these
intensities become actual purchases: In most applied areas, the thresholds
are zero, so that the mappings from intensities into undertaken activities
can be looked at as occurring when the realizations of the YI occur in the
interior of commodity space. Otherwise corner solutions obtain (for one
discussion of estimation in the Kuhn-Tucker/corner-solution/Tobit context,
see Wales and Woodland (1983)).

Assuming, then, that the thresholds are known and constant across
individuals, the basic Tobit model can be described by (4):

YT = NID(X, &, 0%)

: . (4)
v, = max{g, yi).

-

Setting C = 0 gives the model we shall discuss below. Letting ¢, signify

*
the index set for observations for which max (0 y.) = ¢C, anc &, be the

-

index set for observations for which max(0, yf) > 0, then the likelihood,

function for the Tobit model described here is

XiB yi-XiB
L = I(1=9(—)) H(e(—=—=—)/0), (5)
. : o
ief, ieQ,

where?¢ is the standard normal distribution function and #(Z) = d¢(Z)/dZ.

In log form (5) is
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£ = I 1n(1=¢,) - | |lno - I&ne, (6)
. i 1 ) i
ie@, ief,
where |+]  denotes cardinality and where terms not involving (8, 0) are
dropped.

The first-order conditions for maximizing £ @are the (k + 1) equations

3L/88 = T (-2 /0)X] + I (y =X B)X]/0® =0

1ef, ie&,
(7)
8%/80c = IX (X, B)/o® - L ((3'4-Xi6)2 - ¢2)/¢® = 0,
iefy ieq,
where X, = o, /(1=¢_). Using terms in these equations, the method of
- BY +

Berndt-Hall-Hall-Hausman (1974) among others, can be used for optimization,

and statistical inference is based on the asymptotic t-tests generated by
i
utilizing [‘1:;(215%')]“1 as the estimate of cov(:’:) (2i is the i-th term of
Z(ar/38)"', lEéL/ac)J'}.
Several characteristics of the Tobit model are noteworthy. First, as

Amemiya (1984) points out, the likelihood function (5) can be rewritten as

L=(nti-¢.) 1 ¢.1In(¢,/0 0] (8)
1 ieQ,”
Written in this form, the likelihood function of the Tobit model can be
viewed as the product of the likelihood functions of a binomial probit
model with parameter vector a = : (first brackets) and a
truncated-at-zero normal distribution with parameters (5,0) and E(Y ) = X8
o¢i/d>i (second br'ackets).’z As such, separate maximization subject to the
restrictions that the probit parameter vector be a positive scalar multiple
(specifically 1/0) of the parameter vector of the truncated normal model

yields the Tobit model. The probit component be viewed as the model of
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whether or not the threshold is crossed, while the truncated normal
component models the conditional phenomenon of the magnitude of the
activity given that the activity is undertaken.

It is certainly reasonable to consider the possibility that the
parameter restrictions described in the preceeding paragraphs are in fact
invalid. If they were, it would indicate that the model of threshold
crossing is not as intimately related to the conditional model of the
magnitude of the undertaken activity as is implied by the Tobit model. In
the context of recreation participation, this could mean that the decision
about whether or not to engage in some form of water-based activity is
governed by a set of parameters different than that determining the amount
of participation undertaken given that some participation occurs. We
discuss such issues in greater detail later in the chapter.

Another characteristic of the Tobit model that merits discussion is
the fact that the parameters estimated under one assumptions of the Tobit
model are in general nonrobust to departures from many of the underlying
assumptions. That is, violation in the data of some of the properties
implied when the likelihood function is written in the form (5) will lead
to inconsistent estimates of the parameters (5,0’ This phenomenon, is
common in many types of models that are estimated by means of maximum
likelihood.

Two of the most often discussed violations that bode dire consequences
for Tobit parameter estimates are violations of the NID assumption. First,
note that normal, homoscedastic errors are implied when writing the
likelihood function in the form (5). Two possible violations of this

assumption are that the error variances are nonconstant across

observations, and second, that the error structure, though perhaps
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homoscedastic, is nonnormal. The results of several studies, summarized by
Amemiya (1984), indicate that under either type of departure, the maximum
likelihood Tobit parameter estimates are inconsistent.

It is, of course, generally unknown ex ante whether or not the data
being analyzed are characterized by the ideal properties. It then becomes
essential to determine whether there exist such violations if one is to
have some degree of confidence in the consistency properties of the Tobit
parameter estimates. We describe briefly two tests that have been proposed
to detect departures from the Tobit “ideal” conditions. The first test is
for heteroscedasticity of a given form, while the second is a more general
test for misspecification.

The idea behind the test for heteroscedasticity, proposed by Smith and
Maddala (1983), can be motivated as follows. The (k+1)st first order
condition of the Tobit ML model, 3&/80=0, can trivially be rewritten
(3&/9¢)(30/3¢) =0, if we assume that c¢=¢{8)=6, where the dimensionality of ¢
is one, and that 3c¢/36=1. In general, however, it is possible that the
dimension of & is greater than one and that ¢ follows a perhaps complicated
parametric relationship that can vary across observations. In what
follows, we consider the case where ¢, = Zie = E—O + Zﬂe1 , Where Zi is some
proper or improper subset of Xi' Homoscedasticity implies 8, = 0.

In this context, the origin of the inconsistency of the Tobit
estimates under heteroscedasticity is as follows. In assuming
homoscedasticity, the analyst estimates the parameters ( 8,0) based on the
(k+1) likelihood equations (7). Given heteroscedasticity of the above
form, not only do these equations depend on 5,, as well as (8,6,). but the

p likelihood equations (3%/30) (30/36,) =0, where p = dim(&,), are entirely



4-11
omitted from estimation. Given this, the inconsistency is hardly
surprising.
Smith and Maddala propose a simple test for heteroscedasticity when
the o, = Zis hypothesis seems a reasonable alternative to the 0i=9°

(homoscedasticity) hypothesis. The test is simply to base estimation on

the (k+p+1) likelihood equations

(9%/38) =0
(8%/86,) = 0 (9)
(3%/36,) = 0

The test for heteroscedasticity, then, is a likelihood ratio test based on
the restriction &, = 0. One can also examine the asymptotic t-statistics
on the individual elements of g, to see if any of the hypotheses sm = 0,
m=1,...,p, Can be rejected.

The second and more general test for misspecification of the Tobit
model is that proposed by Nelson (1981). Because of its generality, it is
both valuable and nondiagnostic. It is valuable because the analyst need
not specify the nature of the suspected departure from the Tobit
assumptions. It is nonillustrative because, as an omnibus test, should
misspecification be indicated the source thereof is not made apparent. The
test in principle can detect problems such as errors in measurement on the
dependent variable (Stapleton and Young (1984)), nonnormality, and
heteroscedasticity, but can also detect other phenomena such as omitted
variables. As such, a significant Nelson statistic is important, but still
leaves the researcher in somewhat of a quandary.

The Nelson test is a Hausman (1978) test based on moment estimators of
functions of the model’'s parameters which are consistent but inefficient

under general conditions. The details are fairly complicated, and the
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reader is referred to Nelson’'s work for their development. In the
discussion of truncated models below, an extension of Nelson’s test is
proposed, and some details of the basic Nelson procedure are discussed in

that development.

CRAGG-CLASS PARTICIPATION MODELS

In a 1971 paper, Cragg proposed a set of models for situations that
can be depicted as follows. An economic agent makes two decisions. A
dichotomous decision is made about whether or not to engage in some
activity. Conditional on an affirmative for this decision, a decision is
made regarding how much of the activity to pursue. The activities can be
construed in the broadest of terms: expenditures, quantities demanded or
supplied, or the amount of time spent in recreation participation. Such
models have come to be known as "hurdles" models, that is, conditional or
some hurdle being crossed, a decision is made about sane magnitude of
interest. Although these decision processes might in some cases seem
logically to be ordered in a temporal manner, the statistical properties of
the model abstract from any temporal considerations, the quantity decision
being described in terms of conditional densities.

Cragg proposed several models. However, because of the nature of the
present study, only two members of this set will concern us here, these
being the formulations wherein the quantity or second-stage decision is
defined only for positive real. This is in obvious reference to ideas like
“given that an individual participated in activity x, how much time was
spent engaging in the activity.” Although Cragg's other formulations are

also interesting, their discussion is omitted for economy of space.
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For notational ease, we will assume that the same wvector of
independent variables, Xi’ influences both the first-and second-stage
decisions. This is a completely innocuous assumption, however, as elements
of parameter vectors can be restricted equal to zero to accommodate more
general cases. Regardless of the specification of the second-stage or
conditional decision, the first-stage is described by a binary
probit model, ie. the existence of latent random variables
Y;~N(X15,,o§) is posited. Only the signs of the realizations are
recorded, however, and are codified according to

*

i1 =1 ¥y 20 (10)

*
= 0, yi1 < 0

Because of this codification scheme, there is no information about the

* *
scale of the random variables | Yi1 (i.e. the mappings of y., intoy ., are
* *
unaffected by transformations of 1, the form eYi.l for &>0).  Therefore,
some normalization is required, the most common being ¢, = 1. This

formulation gives rise to Cragg’'s equator (7), where, with some change

from Cragg’s notation, we specify

Priyv,. = 1)
21

[}

(X, 8,) (11)

Pr'(yi1 0) ¢(-X181).
where ¢ is the standard normal distribution function (Cragg uses C(-+) for
o()).

For strictly positive second-stage quantity realizations, Cragg

proposes two alternative formulations. Both are based on the specification
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of the conditional densities for random variables (PN given that the
activity is in fact undertaken.
The first formulation, described by Cragg’s equation (9), is one where
the conditional density for the realizations of the Y. is
truncated-normal, with the truncation point at zero. Thus we have

V. =X, 8, X, B,
iz i )/o¢(2 Vs

8y o1y =1 = o >0 (12)

iz
=0 otherwise,
Here ¢ and ¢are the standard normal density and distribution functions.
With similar notational change, Cragg’'s equation (9), the (unconditional)
likelihood of the positive realizations, can be written as
= { = = =
£ly ) = 8“y121yi1 1 Priy =1
(13)

V.. - X.8, X6,
-EELT;-L——)®(XiB;)/o¢( :

g

)

P(

for i3 0. Therefore, the likelihood function of the Cragg eqgs. (7)-(9).

model is
Yy, "X B2 Y. 6,
L= T 9-X B,) I @l=——————) ¢{¥ 2, C0. ) (14)
C A 1 . ] ‘ o
iefly iell,
where &, is the index set for i such that y,, = 0 anc &, is the index set
for yi_: 1. Written in log form,
y;2— Xi n-;z Xlléz
% .= L In(1-0(X,8,)) + I 1n<p<—‘—a—‘——) * 108(X;8,) = 1no - Ine(——). (15)

iEQQ ich
In the form (15), it is straightforward to see that maximization of £ is

fully equivalent to the two-stage maximization problem:
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1) Probit estimation of the parameter vector 3, via maximization of

2= I (In(1=0(X,8,)) + I 1nd(X, 8,); (16)
1ef, ieQ, !

2) Truncated-normal estimation of the parameters (B,,0) Via

maximization of

Y.,~X. B, X, 3,
2210 - ine - ine(

lz = T 1ne¢f
ieq,

). (17)

Because of the complexity of the log likelihood (15), estimation in this
two-stage fashion is likely to be somewhat easier than attempting to
maximize (15) with respect to the (2k+1) parameters (8,, 8,, o).

Cragg’'s second formulation again depends on the probit first-stage
model, out the conditional density of the positive realizations is
respecified. Instead of assuming that the conditional density of the

positive realizations of 3:2 is truncated-normal, the model is now
4L

formulated such that the logarithms of the ¥, are normal, i.e. conditional

-

on vy, =0, log(yiz) ~ N(Xiez,gz). This is Cragg's equation (10). The
condition& density for the igg, is

o)

log(yiz)—X‘ g,

( - N
oL . ) (18)

-1

hly L1y ,=1) = (y, ,0)

- is the Jacobian of the transformation from  _

L

where the term (yiz)
to Iog(yiz).Therefore, the likelihood for the je¢q,,which is Cragg’s
equation (11), is

: (yi2) = }'1(yi2|yi1=1)Pr'(yi1 =1)
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. logly, )-X 8,
- (yi2o) 1¢( i2 i

o )¢(Xi8,) (19)

The likelihood function for the entire sample is

{ -
-1 log\ylz) Xlsz

L =T ¢(-X.8,) T {y,.0o0 o Ye(X, 8,) (20)
ieg, | ieq, 1° ¢ t
In log form,

los(yiz)-x.ﬁz

L = I ln(1-¢(XiBI)) + L 1lno(

)+ ln¢(X181)
ieQ, iel,

g

--lny12 - lno (21)
As in the egs. (7)-(9) model, the eqgs. (7)-(11) model can be estimated in
two stages:

1) Probit estimation of g, as above;

2) OLS estimation of (&,,c¢) using the log transform of the Vio as

dependent variables and Xi as the independent variables. This is
perhaps surprising, but results because the terms in (21)
involving  (&,,c) are identical to those of the likelihood function
of the familiar normal linear model.

Because of the simplicity of this two-stage approach, estimation in
such a framework is obviously appealing. Duan, et. al. (1983) have
proposed the Cragg (7)-(11) model to estimate medical expenditures:
individuals either have or do not have medical expenses, and given that
they have medical expenses, the conditional density of the expenditures is

- 2
lognormal, log (Yiz) (Xisz,o ).
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TRUNCATED-NORMAL ESTIMATION

As described above, estimation of the truncated-normal model is the
relevant second step in estimating the Cragg (7)-(9) model where the
positive observations are assumed to follow a truncated-from-below normal
distribution. Although there are several variants of the truncated normal
-- truncated-from-below, truncated-from-above, doubly-truncated; constant
or nonconstant point(s) of truncation -- the discussion here will
concentrate on the case most relevant to the present empirical work, viz.
the truncated-from-below distribution where the point of truncation is
constant across observations and is assumed to be zero. The results easily
generalize, however, and for a discussion of the statistical properties of
the truncated normal distribution in the most general case, the reader is
referred to Johnson and Kotz (1970, pp. 81-87).

It should be noted that interest in the truncated normal should not be
confined to the role it plays in the Cragg model. The distribution is
useful in many empirical situations. Hurd (1979) notes that

(e)stimation based on only positive y's comes about very

naturally in a number of Kinds of studies. For example, in many

labor supply studies one of the right-hand Variables, the wage

rate, is only observed when the left-hand \variable, labor

supply, is positive. Imputing the unobserved wage rates causes

a number of complications that can be avoided by discarding

those observations for which labor supply is zero. Another

example is a demand study where the price is not known unless a

purchase is made. (Hurd, 1979, p. 248).

Furthermore, as we will see below, estimation of the truncated normal model

on the nonlimit observations of a data set in which data on both limit and
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nonlimit observations available, in conjunction with an informal test
suggested by Olsen (1980), can give sane indication as to whether a Tobit
model estimated on all observations is an appropriate specification.

For our purposes, the likelihood function of the truncated normal can
be constructed as follows. We assume the existence of T, + T, realizations
of random variables Y, ~NID (XiB,az). However, for whatever reasons, only

the positive realization of the Yialre used in the analysis, these assumed

to number T,. Given these assumptions, the likelihood function is
T
L =1 (¢,/08,), (22)
i=1
where ¢ is the standard normal density evaluated at ((yi - XiB)/o) and ¢
is the standard normal distribution function evaluated at (Xi g/6) which

serves as the normalizing factor of the  truncated density. The

log-likelihood function (suppressing terms not depending on (8,0)) is

1 X B

- Of - c 2 . - A~ )
S0y Xiy)/o) log ¢ - Zog $(~—) (23)

t1 -3

¢ =

1=1
Estimation is by means of maximum likelihood. The first-order conditions

for a maximum of & .are

T, -¢i ¥ -xls
38/38 = = [a¢ (=1 X =S
i=1 i o
(24)
T, ¢. X.,§ (y.-X =
30/30 = T (=) (==) - L S
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The second derivatives are complicated and will not be presented here.
Experience has demonstrated that the Berndt-Hall-Hall-Hauman first
derivative approach for optimization works rather well.

In the case of the truncated-normal, as for almost all other limited
dependent variable models, ordinary least squares estimation of the
parameters (§,0) yields biased and inconsistent estimates. However, in the
case of the truncated normal, Olsen (1980) has shown how the OLS estimates
can be used fruitfully to generate estimates of (g,s) that, while
inconsistent, can provide remarkably good approximations to the maximum
likelihood estimates (our experience in other areas is consistent with
Olsen’s finding) and, as such, serve as excellent starting values for
maximum likelihood estimation algorithms.

Olsen’s method relies on a method of moments technique whereby the
moments (specifically the mean and variance) of the empirical incomplete
distribution, that of the positive y,,are related to the moments of the
complete distribution via formulae developed by Pearson and Lee (1908).
Extending the Pearson-Lee methodology to the multiple regression case,
Olsen demonstrates that the least squares slope coefficients differ from
the true slope coefficients by a common factor, and he presents in tabular
form the multiplicative correction factors needed to transform the OLS
estimates of the slope, intercept, and standard error parameters (based or
data from the incomplete distribution) to the corresponding complete
distribution estimates. In practice, we have fitted polynominal functions
of the third degree to Olsen’s tabled data so that the transformations are
facilitated.

Olsen also presents the multipliers for transforming the

(mean/standard error) ratio estimated by OLS on the incomplete distribution
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to the corresponding ratio of the complete distribution, (yu/¢). Olsen
notes that ¢(u/¢), where ¢ is the standard normal cumulative distribution,
should give an idea of the expected ratio of nontruncated to total
observations. Therefore, if one is considering Tobit estimation of the
parameters of a censored distribution, it should hold that the ¢{u/¢) based
on the {u/¢) estimated using Olsen’'s method and treating the nonlimit
observations as truncated normal should accord approximately with the ratio
of noncensored to total observations. There is no formal test to assess
how closely these should accord however. Olsen suggests that a
disagreement here could well indicate that the Tobit is an inappropriate
specification.

As is the case in the censored normal model discussed earlier,
misspecification of the truncated-normal model has serious consequences for
the consistency of maximum likelihood estimates. We describe briefly a
general test for such misspecification.

Use of the Hausman (1978) specification test has become increasingly
popular. Nelson (1981) has proposed a version of the test for
misspecification of the censored-normal (Tobit) model. We here follow
closely Nelson's development and adapt his test to the case where the model
of interest is truncated-normal.

For the complete distribution where random variables Yi—N(XiB,cz),the

truncated-from-below normal density is defined by

f(yilyi>0) = fly,) = ¢({y =X, 8)/0)/co(X, 8/0), y,>0 (25)

=0 , else,
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where ¢ and ¢ are the standard normal density and distribution functions,
and the point of truncation is assumed to be zero. As in the case of the
censored-normal model, if the maintained hypotheses (e.g. errorless
dependent variables, homoscedastic errors, normality) are violated,
inconsistent estimates of the parameters (g,0) will generally result if
estimation is by maximum likelihood based on (25). This is, of course,
analogous to the problems inherent  when the censored-normal is
misspecified.

The basic idea underlying the Nelson test is that there exist
functions of the parameters of the model that under a large variety of
circumstances are robust against misspecification of the underlying
density. Such functions serve as the “consistent-inefficient” component of
the Hausman test. The “inconsistent-efficient” component is the MLE of the
model’'s parameters or (because of ML invariance properties (see Cox and
Hinkley (1974, p. 287)), functions thereof estimated under the null
hypothesis of no misspecification.

Because the censored- and truncated-normal densities are intimately

1X')f) as the basis for the

related, we, like Nelson, use estimates of E(T
test. Here, X is the Txk matrix of independent variables, and Y is the Tx1
vector having typical element Ty Our development follows that of Nelson
on pages 1327 and 1328 of his paper.

For the truncated-normal model as defined by (25) (see Johnson and

Kotz (1970), pp. 81-87) we have:

E(Y,) = X;8 + 0¢(X,8/0)/0(X 8/0) (26)
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E(Y]) = (X, 8)2 + ¢ + (X, B)oo(X,;6/0)/8(X,8/0) @7)

-
]

Egy = ECT 00 = T (Q0X8 + 0X') (28)

where % is the Tx1 vector with typical element (q:i/<1>i). The method of

moments  estimator  of E(T—WX'Y) is T-1X'y. The limiting variance of
201 X y) s
V1 = T—‘X'VYX, (29)

where VY is the TxT diagonal matrix with typical element (E(Yz)—EZ(YiH as

defined in (26) and (27).

The efficient estimator of E(T 'X'Y), denoted Eyys Is  obtained by

evaluating (28) at (g,a) (""" signifies a MLE). The limiting variance of

EXY is obtained via the analog to the approximation of Nelson’s equation.
(3.9) and is

, 'ar ' ~ N PX'X
Vo = T 70 XX | X'x JC(8, 0) [555) (30)
evaluated at (g,0) It is estimated as Vs by evaluating i at (&, ¢
C(:) =TI(+)" where | is the estimated information matrix.
The test statistic is
- ] - E e AL U -
m=T(T X'y~ E, 'LV, - Voo 17"y = By, (31)

where V, is (29) evaluated at (B,0). Under the null hypothesis of no

misspecification, m - x(zk).
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HECKMAN'S APPROACH: SAMPLE SELECTION BIAS

Currently, the most prevalent limited dependent variable estimation
technique is the sample selection bias model, attributable largely to
Heckman (1976, 1979). The model has a number of applications (see
Heckman’'s 1976 article in particular), and is quite easy to estimate.
Because it is so well-known, we will only provide a sketch of the details.
The following section, which contrasts and compares the Tobit, Cragg, and
Heckman models, sheds some more light on subtleties of Heckman'’s
formulation.

Heckman considers the following two-equation model:

Yip = KB ey (32)
*
Yip = XiBa * £y (33)
It is assumed that € and €5 are distributed joint normal, with marginal

densities N(0, ¢2) and N(0,0¢%) respectively, and covariance ¢,,. It can
*
be further assumed that the realizations i, &re unobserved. However,

discrete sign indicators v, ,are available and are mapped as

*

= 1 >0

. *
= Q, yi2 5 0.
In Heckman’'s model, the realizations =+ _ are available to the analyst only

when yzz > 0, i.e. when Yio =].

A concrete example is where (32) is a model determining market wage
rate (or log(wage rate)) by a linear function of X.l and random error and
where (33) is a model determining hours of labor supplied in the market.
It is assumed that either hours of labor supplied or a discrete binary
indicator of whether or not any hours were supplied is available for all

observations. However, because market wage rates are only observed for
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individuals for whom the market wage rate exceeds the reservation wage at

*
zero hours, data on the y.. are available only when y., > 0 ( =1).
i1 i2

Yi2
Heckman then considers the expectation E(Yi1|3’12 = 1), which can be

written as
BYyqlygp = 1) = X B0 v Eleyyfyyp = 1) (35)

If one considers least-squares estimation of (35), the question is: Are

the estimates of &, consistent when Yia is regressed on those Xi for which

y.12=1? Basically the issue is whether the expectation E(e“[y.l2 = 1) is

null. In general, and thus at the core of the sample selection bias

problem, the answer is "no". Based on well-known formulae, it holds that
E(:-:i”y.12 =1 = 012¢i/°2(1,-¢i)’ (36)

where ¢i is the standard normal density evaluated at (Xisz/cz) and @i is
the distribution function evaluated at the same point. Because ©¢,;, is in
general nonzero and since @ (‘u-@i), anc ¢, are all positive, then least
squares estimation of (35) will be based on an expectations function with
nonnull disturbance expectation, and will therefore yield inconsistent
estimates of 3,.

Heckman's suggested procedure in this situation is as follows.
Estimate on the entire sample a probit model for the discrete indicator
representation of the model (33). This yields a consistent estimate of the
parameter vector (B8,/0,)from which consistent estimates of Xi = ¢i/(1'¢;
are constructed. Form the Tx(k+1) matrix Z = IX|al, where A is a Txi

vector with typical element }‘i’ and regress ¥y ong x.]. This procedure
1

il

yields consistent estimates of the parameters 5, and (9,,/0,), having
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effectively solved the omitted variables problem by using a consistent

estimate of E(ei = 1) as a regressor.

11752
In the context of participation models, one could define Y, ‘as some
latent index of the desire to participate. Given that this index is
greater than some threshold level, participation results, its magnitude
determined by the realization y“.‘ The translation of the participation
model into Heckman's framework is not straightforward, however. For
nonparticipants, we observe zero hours of participation rather than not
observing the amount. It is therefore difficult to interpret the meaning

of the realized, but unobserved,y”for nonparticipants. We turn in the

next section to a more detailed analysis of such subtleties.

TOBIN, CRAGG, AND HECKMAN: A DIGRESSION

As there are some similarities between and among the models described
above and identified for expositional parsimony as the models of Tobin,
Cragg, and Heckman, it is probably appropriate to summarize their
similarities and differences and in so doing to elucidate the circumstances
in which each model is more or less appropriate. (The discussion of
Cragg’s model here is the Cragg (7)-(9), i.e., probit/truncated-normal,
model as that version is most similar to the others discussed here.)

First note that the Tobit model is a restricted version of both the
Cragg and the Heckman models. The reason for this is purely mechanical,
however, and should not be taken to imply that the Cragg and Heckman models
are in general identical. As we will see below, these models are
structurally quite different.

To see that the Cragg model reduces to the Tobit, the Cragg

log-likelihood function can be written (following Lin and Schmidt (LS)
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(1984)) as
X, 8
o= I 1ne(-X;8,) + ¢ [1n¢(xisl) - 1no(—=—)-
ieq, ieq,
(37)
(1/2)1n(200%) - (1/202)<yi—xi52)2]
If the restriction B, = 8,/0 is imposed, then the first two terms in the

square brackets cancel and (37) is easily seen to be identical to (6) with
B in (6) vreplaced by 8, from (37). The upshot of such parameter
restrictions is hardly trivial, however. As specified, and discussed
briefly earlier, the Tobit model is fairly restrictive in its behavioral
implications, as the parameter vector that governs the probability of
observing an above-threshold realization of the dependent variable is the
same as that governing the quantity realization of the dependent variable
given that it is above the threshold. Owing to the implications of such
restrictions, LS have concluded that "...the Tobit model is typically used

with more faith than it warrants...” and have developed a test (which we
discuss below) for the appropriateness of the 2,=8,/¢ restriction of the
Cragg model that is implied by the Tobit specification. The following
excerpt from LS provides a particularly cogent summary description of the
appropriateness of the restricted (Tobit) versus the unrestricted versions
of the Cragg model Lin and Schmidt, 1981, pp. 174,5):

(Dn the Tobit model any variable which increases the probability

of a non-zero value must also increase the mean of the positive

values; a positive element of £ means that an increase in the

corresponding variable (element of X, ) increases both Pr (y,>0)

and E(y,|y, > 0). This is not always reasonable. As an example,
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consider a hypothetical sample of buildings, and suppose that we
wish to analyze the dependent variable “loss due to fire,” during
some time period. Since this is often zero but otherwise
positive, the Tobit model might be an obvious choice. However,
it is not hard to imagine that newer (and more valuable)
buildings might be less likely to have fires, but might have
greater average losses when a fire did occur. The Tobit model
can not accommodate this possibility.

Another problem with the Tobit model is that it links the shape
of the distribution of the positive observations and the
probability of a positive observation. For rare events (like
fires), the shape of the distribution of the positive
observations would have to resemble the extreme upper tail of a
normal, which would imply a continuous and faster than
exponential decline in density as one moved away from zero.
Conversely, when zero occurs less than half of the time, the
Tobit model necessarily implies a non-zero mode for the non-zero
observations.

Cragg’'s model avoids both of the above problems with the Tobit
model. A reasonably strong case can be made for it as a general
alternative to the Tobit model, for analysis of data sets to
which Tobit is typically applied--namely, data sets in which zero
is a common (and meaningful) value of the dependent variable and
the non-zero observations are all positive. The distribution of
such a dependent variable is characterized by the probability

that it equals zero and by the (conditional) distribution of the
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positive observations, both of which Cragg’'s model parameterizes

in a general way.

As mentioned above, a formal test of the validity of the restrictions
on the Cragg (7)-(9) model, such that the restrictions imply the Tobit
specification, has been proposed by Lin and Schmidt. Their observation is
that since the Tobit model can be viewed as a restricted Cragg model, a
straightforward test for the validity of the restrictions (that furthermore
circumvents the need to estimate both the restricted and unrestricted forms
of the model) is a Lagrange multiplier:est.b’ The simplicity of the test
is extremely attractive. Based on the results of the Tobit estimation, the
Lagrange multiplier statistic is calculated, and, using a x* test, the
validity of the restrictions is tested. If the test indicates rejection of
the null hypothesis that the restrictions hold, then the Cragg (7)-(9)
maximum likelihood estimates can be obtained via probit and
truncated-normal estimation. Should the test fail to reject the null
hypothesis, however, the analyst is then spared the effort and expense of
estimating the unrestricted Cragg model. However, it is not always the
case that the Tobit is computationally less burdensome than the Cragg
alternative in which instances the appeal of the LM test is somewhat
diminished. We propose here a Wald test for the Tobit parameter
restrictions considered by Lin and Schmidt that might be considered
attractive when the Cragg model is computationally preferred to the Tobit

Some recent experience has found the Tobit model in several empirical
applications to be consistently rejected in favor of Cragg’s alternative
based on the Lagrange multiplier test criterion. Should these specific
results generalize, efficient estimates of the parameters of the Cragg

model are likely to be desired by researchers otherwise contemplating the
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Tobit approach. The appeal of the Wald test, then, is that since only the
estimates of the parameters of the unrestricted model are required, maximum
likelihood estimates of the Cragg model are available immediately and the
Tobit model need not be estimated. Regardless of whether the Wald test
suggests rejection of the Tobit restrictions, a model with a necessarily
higher likelihood than the Tobit will have been estimated in the first
instance. It should be noted that the Wald test is in a sense a mirror
image of the Lagrange multiplier test in that the former relies solely on.
ML estimation of the unrestricted (here, Cragg) model while the latter is
based exclusively on the ML parameter estimates of the restricted (here,
Tobit) specification. The two test statistics, however, have the same
asymptotic distribution (see Rao (1965) pp. 347-352).

Following Rao (1965) and Amemiya (1983), the Wald test statistic is

W= n'lEST TR ] T, (38)
where J:Jze) is the estimated information matrix, h:h((;) is the (kx1)
vector of nonlinear restrictions on the parameters of the form n(é)--c, and
H=H(5>an/ae' is a (kxgq) matrix of partial derivatives. All evaluations are

~

at eML which is the ML estimate of the parameters of the unrestricted
(here, Cragg) model. Under appropriate conditions (see Rao), W is
distributed asymptotically central y* with k degrees of freedom under the
null hypothesis that 8,=8,/0.

In the Cragg specification, a=(a'gy, 0" and g=(2k+1). The,
parameter restrictions to be tested can be written as

h = 08,-8,. (39)
Given this form for h, it follows that

H= o1 [-1,]6.1. (40)

J'l can be estimated by the ML covariance matrix of the parameters of the
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Cragg model. Because of the structure, J, and therefore -:]1, are block

diagonal, viz.

o n
=1 = 11 = t
J J kak ka1 A °
0 i J22 J23 0 B (41)
K XK
O J32 J33
L 1xk -

so that the submatrices A and B can be estimated separately as the
covariance matrices of the probit parameters £, (A) and the
truncated-normal parameters (6,,0) (B).

Thus, W can be calculated by evaluating (39), (40), and (41) at évu
and using the formula (38). As mentioned above, under the hull hypothesis
that the restrictions hold, W is distributed asympotically central x’with
k degrees of freedom. Furthermore, W has the same asymptotic distribution
as the Lagrange multiplier test statistic proposed by LS, so preference for
one test statistic over the other will likely depend largely on the
relative ease of implementation.

Turning now to Heckman’'s formulation, his two-equation model is seen
to reduce to the Tobit model as follows. Recall that the model can be
written (with notational changes) as

Y,

i1 =>\in + €,

i1
(42)
* .
= +
Yip= X;8a * €ype
*
Yi2 is a latent variable, however, and only a discrete (0,1) sign indicator

of its realization y12 is available. Vs is observed only when , _ .

~ny

Letting 8,=8, and €17€ 5 (i.e. the error structure is univariate rather

than bivariate), then the Heckman model is the standard Tobit model. The
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logic is that when these restrictions are imposed in the Heckman
two-equation model, the remaining single equation plays both the censoring

and the determination-of-intensity roles. Since the censoring occurs as a

*
i2’

requirement that the quantity or intensity realization be confined to the

result of a non-positive realization of the random variable Y the Tobit

nonnegative orthant is automatically satisfied when the restrictiony_1=yaf2
it i

(i.e. Bi=8;, eyy=¢,

two-equation framework is not specifically designed to model situations

) is imposed. In general, however, the Heckman

where realizations of the dependent variable of interest are necessarily
nonnegative and are recorded for all individuals/observations, and where
Pr(yi=0) > 0. Heckman’'s formulation has yi;eo except on a set of measure
zero. We turn now to an explanation of the fundamental differences between
the Heckman two-equation formulation and the two versions-of-interest of
the Cragg model.

The two-equation Heckman model describes two phenomenon, Yi and Y,

1 i2’
that are marginally distribute, respectively, as  NID(X, &,,)s? and
NID(Xiﬁz,oi)(ci is usually restricted = 1 for normalization when only the

*
sign of Yio is observed). The joint distribution is bivariate NID(X,6,,

Xisz,of,of,p),where pis the correlation of (¢ (0,270,047,

i1 i)
which is in general nonzero. The important point is that these marginal

and joint distributions are unconditional. That is, for _all i, there exist

realizations (yil’ yzz) although the realizations Yi1 for some i will be
unavailable to the researcher. Casting the problem concretely in the area
where Heckman’'s model has been most fruitfully applied, labor economics,
sheds further light on the subtleties of his model. Here we define
yil =Iog(Wi) and y:2=log(Hi+1) , where ~_.swage earned in market work and

*
H; is hours of market work. Thus, y . is positive only if market hours are
-G
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positive. It is posited that the expected values of both Yi1 and Yio, are
linear functions of personal characteristics and other variables so that
the two-equation model results. However, because we only observe the
market ‘wage for those individuals actually participating in market work
(those for whom Hi>0)' some subset of observations will not have data on

the vy.

i1 There is a market wage determined for nonparticipants; whether or

not such individuals have knowledge of their market wages is immaterial.
The relevant analytical fact is that such data are unavailable to the
researcher.

In this labor supply framework, it is apparent why the estimation
techniques developed for the two-equation Heckman model and discussed
earlier in this chapter have such appeal. The more immediate concern, of
course, is whet her such techniques are in fact appropriate to the
estimation requirements of the present analysis. In a nutshell, Heckman’'s
model is one where there are two equations of interest, both holding for
all i unconditionally, and where (except when restricted so as to be
identical to a Tobit model) the probability of observing realizations of
the dependent variable equal zero is zero. Does such a formulation capture
the essence of the "corner solution” problems of the participation
decision?

It seems rather artificial to cast the recreation participation
functions in such a framework. It is not generally the case with the
generation of participation data that we can posit the existence of some
latent variable such that data for the participation measure(s) of interest
are only available given a positive realization of the latent variable.
Rather, the processes of interest here are represented more typically by

data that indicate the realizations of participation decisions for all
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individuals, even though these realizations are quite frequently on the
boundary of the consumption set. We turn now to a discussion of how the
Cragg models differ in substance from the Heckman two-equation setup and
argue that the Cragg formulations are more suited than Heckman’'s model to
the nature of a subset of our estimation requirements.

Although like the Heckman formulation in being a "two-model”
specification, the fundamental point of departure for the Cragg technique
is that one of the two models is formulated in terms of conditional
expectations. The conditions on which the expectations are taken are, as
described above, the outcomes of unconditional models, which are generally
stated as binary representations of latent random variables. Thus, in the
context of recreation participation, there is an unconditional model
defined for all individuals determining the binary outcome (participate,

don’'t participate). Conditional on a “participate” outcome, the quantity

of participation is determined either by a lognormal or truncated-normal
model. The unconditional likelihood for a representative participant is
then

density (participation given participate) *Pr (participate), (43)
which is equation (13) as specified earlier. There is no density of the
guantity of participation defined for nonparticipants, unlike Heckman’s
formulation that defines such a density for all individuals.

Deaton and Irish (DI) (1984) , in an. independent line of investigation,
have cast the Cragg (7)-(9) model in a two-equation Heckman formulation.
They indicate that a positive observation on the quantity measure of

interest is made when, in the notation used earlier, both Yi1 and Y., are

realized as positive, else a zero or a nonparticipation results. In two

cases, DI specify
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it %M il
| (44)
*

Yy = XiBa T gy

cast thusly, the Cragg (7)-(9) model can be viewed as a Heckman
two-equation model, but with a restriction imposed that is absent in
Heckman’'s formulations. That is DI seem to have ignored one aspect of the
Cragg model that is key in differentiating it from Heckman’s specification,
viz. that y22>0 is both a necessary and sufficient condition for a
positive realization of yj: to result. That is, Pr(yi1>oly:2>o) =1,
Pr(yiq =Oly;2<o) = 1. When, and only when the first hurdle is traversed is
there a positive amount of the activity undertaken. So DI's statement that
positive realizations of both variables determines whether is observed
positive is somewhat misleading in that a positive realization of either
suffices to assume the positivity of the other. Neither of Cragg's
specifications, then, is really in the spirit of the model proposed by
Heckman except, of course, when both the Cragg (7)-(9) model and the
Heckman two-equation formulation are restricted such that the Tobit
specification results.

Owing to the subtleties of the arguments, it is likely that the above
discussion has provided somewhat less than a total clarification of all the
relevant issues. Some of these shortcomings are due to the fact that even
Central participants in the academic debates appear still unconvinced about
the nature of the differences among the estimation techniques. For
example, as noted earlier Duan and coauthors (1983) have used the Cragg
(7)-(11) estimation technique to model individuals’ medical expenditures.

The expenditure decision, in the spirit of Cragg’'s specification, is

statistically modeled as two separate processes. Model one determines the
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binary outcome of whether or not any expenditures will occur, and model two
determines the amount of expenditure (positive by definition) that results
conditional on there being some expenditure. In this paper, Duan and
coauthors assert that the covariance between the error terms of the two
models is irrelevant insofar as construction of the likelihood function is
concerned.

Recently, however, Hay and Olsen (1984) have questioned the Duan and
coauthors method, stating that this approach “requires some fairly unusual
assumptions on the model joint error distribution and functional form (p.
279).” Moreover, Hay and Olsen go on to claim that the Duan and coauthors
formulation “can be interpreted as being nested in the more general sample
selection models (p.279)." Duan and coauthors respond that Hay and Olsen
“are incorrect in claiming that our models are nested within the sample
selection model.”" and that “the conditional specification in the multi-part
(i.e., Duan and coauthors) model is preferable to the unconditional
specification in the selection model for modeling actual (v. potential)
outcomes (p.283)."

As we argued earlier, the sample selection or Heckman approach Is
particularly fruitful when analyzing phenomena such as labor market
participation. Quoting Duan and coauthors:

For certain empirical problems such as labor force

participation, the primary goal might be to predict the

potential outcome instead of the actual outcome; therefore, an
unconditional specification such as the sample selection models
might be preferable. For the present application, however, the

goal is to predict the actual expense, not the potential

expense;  therefore, the unconditional equation... is of no
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direct interest, and the preference for the unconditional

specification in the other empirical problems does not apply to

the present application. (p. 286).

In any event, this discussion demonstrates that there still exists
some confusion on these points in the published literature. We have
attempted to be as thorough as time and space permit in hope of emphasizing
one extremely important message. That is, it is essential that the
researcher be intimately familiar with the behavioral and statistical
structure of the models of interest in order to avoid being swallowed by
the slippery quicksand we have described. The nature of participation
measures as conditional or unconditional and the interpretation of any
latent variables in the model must be quite clear before the correct
estimation technique can be selected. When, and only when, such issues are
in order is it possible to make sense of the estimated obtained and their
relevance to benefit estimation.

It seems that the logic of the participation decisions of interest in
this study is better captured in terms of Cragg's specifications than in
the Heckman two-equation model although this question is obviously still
open to informed debate. The specification of the
magnitude-of-participation model as a conditional model is, however,
intuitively plausible, and Cragg’'s formulations provide a natural vehicle

for translating such intuitive plausibility into an econometric framework.

POISSON-DISTRIBUTED PARTICIPATION DAYS
In modeling event counts (non-negative integer data) over some time
interval (t, t+dt), the Poisson distribution is commonly used. Here, a

random variable Y; follows the probability law
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Pr(¥, = y) = exp (-xi)xiyxy:, vel0,1,2,...}

(45)
=0 , else

with E(Yi) = Var‘(Yi) = )‘i'

It happens that there exist recreational participation data of
interest that are recorded as nonnegative integers, most obviously as
counts of days of participation. For any individual, such measures can,
over a time interval (t, t+dt), say one year, assume only integer values in
{0,1,2,...,365}. Because of the paucity of observations likely to be found
at the upper (365 day) limit, we ignore the fact that these measures obey
upper bounds and concentrate instead on the complications presented by the
large number of individuals who in a typical random sample of the

population report zero days of participation in the relevant categories.

Analogous to the familiar normal distribution where for econometric

work one typically specifies Hyo® X, 8, the Ai parameter of the Poisson
distribution can be reparameterized to admit the influence of
covariates. Since for all i, )\i > C, 2 straightforward approach is to

assume ki :exp(){i g) and to estimate § by maximum likelihood (see Hausman,
Hall, Griliches (1984)) Hausman, Ostro, Wise (1983), Portney and Mullahy
(1984)). This is the approach adopted here for modeling the
participation-days outcomes.

One drawback of the Poisson model is the restriction that E(Yi)

= Var(Yi). Should this restriction not in fact characterize the data, the

~

maximum likelihood estimates of the covariance matrix of B based on minus
the inverse of the estimated Hessian will be inconsistent and t-tests based
thereon would be misleading. Hausman, Ostro and Wise circumvent this
restriction by allowing for an overdispersion parameter. A different

approach is used here, using an estimator of the covariance matrix that is
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robust against departures from the mean=variance restriction, this
procedure is described below.
Given T independent observations, the log-likelihood function of the

Poisson participation model can be written as

% = i: —exp(XiB) + iniB + C, (46)

where exp‘(XiB) = >‘i’ Ys is the observed participation day count, and C does
not depend on B. It can be shown that £ is concave in B. The first-order
conditions for the maximization of & are

9L/ 9R = f -exp(XiB)Xi + yi)q =0 (47)

with the maximum guaranteed by the condition
5°/0808" = T ~(X!X,)exp(X, ) (48)
i

negative definite.
The maximum likelihood estimates of ¢ obtained by maximizing (46) are
consistent, but the estimate of the covariance matrix  of BML using

~

:—822/3886']_1 evaluated at g will be inconsistent if the data are not in

ML
fact generated by the specified Poisson distribution.
This is most easily seen as follows. Note that the model can be

equivalently cast as a nonlinear least squares regression, the i-th

observation being

Y.

i E(Yi) * gy

(49)

exp()(i B) + £

with E(ei) = 0. Clearly, var‘(ei) = vi~ o . exp(XiB). so that the e, are
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heteroscedastic. If nonlinear weighted least squares is used with the
weights exp(-Xis) formed using consistent estimates of 8, and if the data
are in fact Poisson as specified, the maximum likelihood consistent
estimates of g and cov(é) will obtain. (The consistency of ABML for g does
not depend on the weighting scheme.) However, if the data is not
Poisson-distributed, the estimate of cov(é) obtained in this manner will be
inconsistent and asymptotic t-tests based thereon will be misleading. The
case is fully analogous to the estimation of the heteroscedastic linear
model which yields inconsistent covariance estimates (and, therefore,
t-statistics) if the heteroscedastic nature of the error structure is

either ignored or incorrectly specified.
Royall (1984) has demonstrated a method whereby estimates of cov( ;
robust against misspecification of the underlying distribution of the data
can be obtained for various distributions, including the Poisson, when

B

[-8252,/3638']-1 evaluated at "ML fails to yield a consistent estimate of

cov(8). Denoting I(8) as -3%%/3838'], Royall’'s suggestion is to estimate

~

cov(B) as

I(B)'?ZE(:;fai/;ae>(asai/ais)']I<.a>'1 (50)

1

where 9"'i is the i-th observation’s contribution to the log-likelihood

function and where all relevant evaluations in (50) are at BML"

GEOMETRIC-DISTRIBUTED PARTICIPATION DAYS
One alternative to the Poisson model for the modeling of count data is

the geometric distribution. Though seemingly not as often used by

econometricians as the Poisson, the geometric is a logical choice should an
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alternative to the Poisson be desired. Furthermore, the basic geometric
specification does not suffer from the mean=variance restriction that is
implied in the basic Poisson model. As will be seen below, the variance of
a geometric-distributed discrete random variable is greater than its mean,

although the fact that the variance depends on the mean limits somewhat the
flexibility of the distribution.

Our description of the properties of the geometric distribution
follows that of Johnson and Kotz (1969). First, it should be noted that
the geometric is a special case of the negative binomial. Discussion is
confined here to the geometric because it is computationally far more
straightforward than is the general negative binomial. The geometric

distribution is defined as follows:

Pr(x=k) = PK(1+p) 1)y Lgi1,2. . (51)
=0 , else
with P>0. It holds that E(X) = P and Var(X) = P(1+P). As in the

econometric specification of the Poisson model considered earlier, one
allows the P to vary across observations as Pi' and again ?; = eXp(XiB) is
a sensible parameterization due to the required positivity of the Pi'

Given this, the likelihood function for T independent observations car.

be written as

T -(k,+1)
L = T exp (k;X.8)(1 + exp(X;8)) "1 (52)

i=1

with log equal to

l:

i ~13

kixie - (ki+1) log (1 + exp(xie)) (53)

i1=1
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where ki is the observed count for the i-th observation. The ML estimate é

satisfies
T
9%/38 = Lk, - (k, + Dexp(X;8)/(1 + exp (X,8))IX} = 0 (54)
i=1 ~
The Hessian is
, T
H = 320/383B = J -(k. + 1)[exp(X.8)/(1 + exp(X.8))2IX'X.,
i=1 1l 1 1 11

which is seen by inspection to be negative definite. Because it is a
fairly uncluttered expression, estimation and inference can proceed using
-H as an estimate of the information matrix and (-H)-1 as an estimate of
the covariance matrix. (It might also be noted that (55) bears a strong
resemblance to the Hessian of the well-known binary logit model.5
Unfortunately, much like the Poisson specification, the covariance estimate
thus obtained is not robust to departures from the data being in fact
geometric. However, the methods proposed by Royall (1984) and described

for the Poisson model can be used for the geometric distribution also. As

the development is identical, the details are omitted.

MULTINOMIAL-DISTRIBUTED PARTICIPATION DAYS

One type of micro data of particular interest in recreation economics
is of the following nature. We observe over the course of sane fixed time
period (say one year) the number of times (say days) that an individual
participates in (k-1) mutually exclusive recreation activities and,
therefore, the number of days on which no recreational activity was
undertaken which can be viewed as the k-th activity. To be concrete, the

annual recreation profile for some individual who has in his/her recreation
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possibility Set three activities (fishing day (=F), boating day (=B),

swimming day (=S)) and nonparticipation (=N=365-F-B-S) days might look like

F=12
B =17
S=0
N = 336

We also presume that the profiles of M individuals are observed.

In the analysis of such data, it is helpful to make two (fairly

strong) assumptions:

(1) the data characterizing the individuals, i.e, the independent
variables, are invariant over the fixed time period. That is, the
characteristics of individual i, X,, are representative of i for
the entire year,;

and

(2) the decision to participate in any one activity -- including
nonparticipation -- on any given day depends neither on what.
activities have been undertaken on the previous days nor or
expectations of recreational participation in future days. That
is, the daily decisions are (statistically, at best) independent.

Note that both these assumptions are more or less questionable with.

(2) perhaps being the more restrictive assumption. However, we proceed
under the constraints that these assumptions impose.

Given observations on the type of recreational profiles described

above, and the assumptions there set forth, it is appropriate to view the
data characterizing the recreation participation of individuals as

realizations of multinomial random variables (see Morey (1981) for a
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related discussion). From discrete statistical theory, the multinomial
distribution of a random variable Y with parameters (T; Pl""’ Pk) can be

written

Pr(Y = y) = T! 1 (PFj/t_!), (56)
~ = j=p 33
where T is the number of trials (here days), the tj are the number of
occurrences of the j-th outcome, and Fj are the probabilities that the j-th
outcome will occur on a single trial.

To extend the statistical model to the recreation participation
measure, we consider each daily participation decision (where
“participation” now refers to participation in nonrecreational activities
also) as one trial from a multinomial distribution with individual-specific

parameter vector for the m-th individual (Tm; P1 oo Pk ). Assuming T =
TI;- = T for all m, m, we henceforth drop mthe sub;ncripts on the T
parameters. The yearly profile, then, is the 365 (by assumption
independent) daily trials for each individual. The econometric objective
is the estimation of the Pj , i.e. estimation of the probabilities of
engaging in the k possible ac{Ti]vities on a given day.

For computational simplicity, we proceed as follows. A logistic
distribution for the daily outcome probabilities is assumed. Thus, the

probability that the outcome is Z on any trial is

PZ = exP(XmBZ)/.Z exp(X
m jeq

mBj ) (57)

for Zea={F, B, S, N}. The logistic distribution assures that for all m
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the multinomial requirement (I P. =1) is met.
Jeg Jm

Since the probabilities (57) are unique only up to a difference in
parameter vectors (Bj-Bj.), some normalization is required. The
normalization most convenient and easily interpreted is BN = 0, so that Be
SB’ and Bs are interpreted as differences between the respective activity
parameter vectors and the nonparticipation parameter vector.

The objective, then, is estimation of the parameter vectors BF'ED’
and SS' This is, of course, fully analogous to the widely-used multinomial
logit model where a single outcome from a set of mutually exclusive
outcomes is considered. In fact, that case is merely a special case of the
present exposition for which Ty =1 for all m.

Estimation is by means of maximum likelihood. Assuming the existence
of N independent profile draws from the population, the likelihood of the

data as a function of the parameters is

M M tjﬂ
L(B) = Pr(y_=y) = LTI T (P, "/t 1) (58)

m .
m=" m=1 JjeQ “m Ym

where the Pj are as defined in (57) and where 2 is the choice index

m
set. In log form,
M
2{(BY =L T t, logP, -+ C, (59)
m=1 jefl “m Im

where C is a constant not depending on §. Given the assumed logistic

probabilities, we have

M

() = I t,[XR.,=-1log (I exp (X3 ))]+C. (60)
m=1 je W n kel K
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Maximizing (45) is simpler than maximizing (43), and can be accomplished
with only a slight modification of most existing (single-trial) multinomial

logit programs. 6

GROUPED OR INTERVAL DATA - ESTIMATION UNDER THE NORMALITY ASSUMPTION

There are often institutional or other constraints in the sampling or
data-recording processes that have the effect of generating inexact data
for research purposes. A common case and one that is of immediate
relevance insofar as the present empirical investigations are concerned is
the situation where continuous measures of interest, such as the amount of
time spent participating in sane recreational activity, are cast in the
recorded micro data as grouped or interval data. We discussed above

strategies that might be considered when the outcomes are recorded as

“number of days” or “number of times,” i.e. where the data can be viewed as
realizations of discrete statistical processes rather than as
discrete/ integer codings of fundamentally continuous processes. In this

section we concern ourselves with the situations where the underlying
processes are best viewed as continuous phenomena but where the vagaries of
either the sampling or data-coding procedures are such that only a finite
number of intervals which the continuous measure is defined are
determined and the only data available to the analyst are indicators of the
interval bounds in which the (unknown) continuous measure is realized. For
example, the latent continuous measure might be “time spent participating
in activity x over time period y (say t),” but owing to whatever reasons,
all one knows is whether t=0, te(0, 4 days], te(4 days, 8 days], or te(8
days, 365 days) (for y=one year). The purpose of this section is to

present an estimating technique designed to handle such situations.
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The method is based on the work of Rosett and Nelson (RN) (1975), who
developed what is known as the two-limit probit estimation technique, and
of Stewart (1983), who generalized the RN method to account for
multi-interval data. We will, therefore, refer to the model expounded here
as the RNS method. We begin by positing the existence of
normally-distributed random variables Y?-NID(Xi E,02). The realizations
y: are unobserved, however. Only the knowledge that the realization y: is
an element of some proper subset of R is available. More formall vy,
partition R into P(>2) subsets J,, such that U szR, JkﬂJj=0,’v‘k,j. The
data available to the analyst are: k (such that y:aJk)), inf(Jk), and
sup( Jk) 7 Note that when P=2 this reduces to the binary probit model while
for P=3, the RN two-limit probit model emerges.

Following Stewart, we define the p-th interval by (A p—l'Ap), and set

AO-:—-m, AP=+Q,‘ Given T independent observations, the log-likelihood

function of this model can be written

T
£ = ¢ log (9 ) (61)

1 p(1) ~ Fp-1) (1)

¢ . . . . . .
where pli) = @(Ap-XiB/o),é being the cumulative distribution of the
standard normal. Estimation is by maximum likelihood. The first-order

conditions for maximizing £ are

T
E G-y T %)ty T Ypen ()X °

and (62)

(p-1) (i) ~ ep(i>/3(°;:;: - °(p—1)(i)) =%
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where 6 _,.. = (A
pi) ~
density (ZN)_?exp(--Scz). Because the matrix of second derivatives of & is

- X 8/0)(¢>(Ap-xi B/¢)), and ¢(c) is the standard normal

fairly complicated, we have elected to use for optimization purposes the
method of Berndt, Hall, Hall, and Hausman (1974), which utilizes only the
first derivative vector ((3%/38) ', (3%/30)] . (Note that when P = 2, i.e.
when the model is binary probit, a parameter normalization is required.
Typically o=1is used. This reduces the number of first order conditions
from (m+1) to m, where m is the dimensionality of 8.) Stewart has shown
how iterative least squares can be used to obtain the ML estimate. The

reader is referred to his work for the details.

GROUPED-DEPENDENT VARIABLE ESTIMATION: SOME EXTENSIONS

As discussed earlier, Stewart (1983) has proposed several approaches
to parameter estimation in situations where the dependent variable is
grouped. These are cases where the only available information on the
dependent variable is of which of P mutually exclusive and exhaustive
subintervals of the real line it is an element. The main purpose of
Stewart's paper is to suggest methods of consistent parameter estimation in
the grouped dependent variable (GDV) model that are computationally less
burdensome than are iterative maximum likelihood techniques. The intent of
this section is to propose extensions of the idea of GDV estimation in
several directions.

The strategy of this section is as follows. First, the GDV model is
discussed in the context of the censored- and truncated-normal models for
continuous dependent variables. The analogies are highlighted, and it is
shown that a form of misspecification that precludes consistent parameter

estimation in the censored-normal (Tobit) model might well plague GDV
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estimates in sane circumstances. An interpretation of and tests for an
obvious alternative specification in the spirit of Cragg's (1971) hurdles
model are suggested.

Second, it is proposed that the GDV framework can, under suitable
circumstances, permit consistent parameter estimation when continuous
censored- or truncated-normal dependent variables are measured with error.
Stapleton and Young (1984) have demonstrated that, unlike the case of the
basic linear model, errors of measurement on censored or truncated
dependent variables result in inconsistent parameter estimates when
estimation is by maximum likelihood. It is suggested below that if the
errorless dependent variable can be reasonably assumed to occupy certain
intervals with probability one, consistent estimation is possible within
the GDV framework: This result is particularly important in the case where
the dependent variable is truncated-normal because easily-computable
consistent estimators based on expectation functions (see Stapleton and
Young (1984)), feasible in the censored-normal model, are more difficult to
implement in the truncated case. In this context, a Hausman (1978) test is
proposed for testing the errors-in-dependent-variable hypothesis.

We turn to a brief recapitulation of the basic elements of the GDV
model and its estimation by means of maximum likelihood. The presentation.
parallels closely that of Stewart's Section 2.

We assume the existence of T independent drawings from random
variables Y: -N(Xis,cz) where X; and =' are 1xk vectors. However, as
discussed above, the point realizations are unknown to the researcher. The
only information on the realizations is of which of P mutually exclusive
and exhaustive subintervals of the real line it is a member. Given (P+1)

constants ap, pe{0,1,...,P} the P intervals are defined by I, = (a,a,]



P
vy Igo= (ap,, ap), where ay, ="=, ap =*e; pS1IP=R; IpﬂIp,=G, ¥
p,p'ell,...,P}. For notational ease we adopt the convention g=p-1.

Letting ¢ and ¢ denote the standard normal density and distribution

functions, respectively, the i-th observation’s contribution to the sample

likelihood is
L, = <1>(<api - X, 8)/0) - ¢>(<aqi - X, 8)/q) (63)
where ap (aq ) is the supremum (infimum) of the interval of which Y is an

i i
element. The interpretation of (63) is L. is the probability that a
1

standard normal variate is in the interval (a |, ap ). The sample
i i
log-likelihood function, then, is
T
g =) log (¢((a_ = X.B)/o)~d((a_ ~ X, 8)/a)
=1 p. i q. i
i i
(64)
i
= log (¢ - % )
i=1 Pi 9

The maximum likelihood estimates are obtained via simultaneous solution of

the (k+1) equations (65) for (g, o):

T
9%/86 = 1 (o - ¢_ )/ole_ =& ! =¢C
i=1 S Pg Py -
T
38/80 = I ((a_ X, 89, = (a_ X Es (65)
=1 9 % Py Py
(¢ -~ ) =0,
i %
where o is the standard normal density evaluated at (ap - X, B)/0 (and
i i
¢q. is the same density evaluated at (aq - X,8)/0). Because the second
I -

i
derivatives are messy, optimization via the Berndt-Hall-Hall-Hausman method

of first derivatives is an appealing choice.
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The GDV model as defined above is described in a fairly general form
where it is assumed that the P intervals Ip mutually exhaust the real line
and that Pr(yieIp)>O ¥ pe“"f"P}'_ This structure can be amended,
however, to allow for situations often interesting to economists. To this
end, two restricted versions of the above framework, which we term the
censored-GDV (CGDV) and truncated-GDV (TGDV) models, are proposed. The
censored version in fact turns out to be (64), but is described
independently to facilitate discussion of and comparison with the truncated
specification. In both cases discussion is confined to the normally
distributed case although other options are certainly available.

The “difference” between the general specification (64) and the CGDV
formulation is that for the CGDV model there is a mass point of the
distribution at sup(I,) for the censored-from-below CGDV or at inf(IP) in
the censored-from-above version. That is, Pr(yisll) = Pr(yi = sup(ll)) in
the former case, Pr(yie:IF,}:Pr(yi :inf(lp)) in the latter case. The CGDV
model can thus be viewed as a Tobit model in which the noncensored
observations are grouped. The log-likelihood function is identical to
(64), but can be written in a form more closely resembling the familiar

Tobit log-likelihood function as

—~
o
—~
—~
v
]
<
pes)
~
~
Q
~—
~—
+

(6 -0 ), (66)

[
09
Q
+—
[42 B e}
S
b
0
o
.
o
o

where &, and ¢, are the index sets for the censored and noncensored

observations, respectively, and where censoring from below at a; is

assumed.
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Since
. (9 -3¢ )
lim P. q.
i i de(2)
pa+0 = == - o), (67)

where ba :p? - aqi, (66) is seen to reduce to the standard Tobit model
when the lengths of the intervals Ip become infinitesimally small and the
number of intervals goes to infinity. When structured thusly, the CGDV
model would be appropriate in situations where, for example, nonnegative
data on y; are grouped as {0}, (1,41, (4,8], (8,+=), representing perhaps
expenditures or hours of labor supplied. Note that the CGDV model is
analytically identical to the basic GDV model (64), so that the estimation
techniques suggested by Stewart can be utilized.

The TGDV model requires different treatment, however. Here, as in the
continuous truncated-normal model, there is no mass point of the density

like that occurring in the CGDV specification. Rather, there is assumed to

be a known point of either upper or lower truncation, a,, and we assume

Pr(yi = a.) = 0. Confining discussion to truncation from below, again
: P

define P intervals Ip, now requiring Ip = (aT, + ), with an > ~=,  The
p=1

truncation of the density necessitates an amendment to the log-likelihood
function (64), viz.

T

i

N r~13

1log((<1>pi - ¢qi)/®((XiB - a_r‘)/o)).

The maximum likelihood estimates of {&,qd) satisfy
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)) X! =0

A\l
T. t

T
3L/ 9B = )(( - / - - /
3 =z1( (¢q_ @p.) c(dap cbq_)) (ani ad 1

i i 1 i i
(69)

9L/ 90 =
i

I r~1-3

((a_ = x,8¢ - (a_ =X 8¢ )o*(é =20 ))
;e i i PRy i Y

T)gor

+ ((XiB - a)er /0%¢
- i i

where ¢T. and ¢T. are ¢ and ¢ evaluated at (XiB-aT)/c{ As is the case in
the CGDb nmddf estimation based on first derivatives is a sensible
approach; The TGDV model arises in situations similar to those analyzed by
Stewart where, for example, earnings data are obtained for some sample in a
grouped manner, but only those reporting positive earnings are sampled.
The intervals might then be (0, 10], (10,20], . . . , (105, +=).

Having formally juxtaposed the CGDV and TGDV models, we now discuss
how a form of misspecification that arises in the continuous
censored-normal model can also corrupt the CGDV model. One resolution of
this specification problem rests on the wuse of the TGDV model.
Specifically, we are concerned with the grouped data analog of the case
discussed by Cragg (1971) and Lin and Schmidt (1984). (With little loss of
generality, we consider the censored-from-below specification in the
sequel.) The central question to be addressed is whether the statistical
models for the latent random variables Yz determining PrQq>aC)(the
first-stage model) differ from the second-stage models for the conditional
densities f(yi |yi>ac) in the continuous case or Pr(yieIplyiéII) in the GDV
case. The continuous Tobit and the CGDV specifications tacitly assume that
these first- and second-stage models reduce to a single model determined by

*
the same parameterization of the mean and variance of the latent Yi.
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However, as discussed in depth earlier, Lin and Schmidt (1984) have
presented cogent arguments against the plausibility of this tacit
assumption as it pertains to many phenomena of interest to econometric
modelers.  Should the distribution determining the phenomenon Pr(yi>aC) in
fact be parameterized differently than the distribution f(yi|yi>ac) or
Pr‘(yielplyiéll), then maximum likelihood estimation of the standard Tobit
or, of more immediate concern, the CGDV model will generally yield
inconsistent  estimates of the parameters of  both the  first- and
second-stage models since the log-likelihood function is misspecified.

In the continuous case when a, = 0, Cragg suggests two specifications
for the second-stage conditional density of the Yy - First is a lognormal
specification, where given y;>0, logYi~N(Xiﬁz,oz). Second is a
truncated-normal model, where given yi>O, Yi-TN(Xi B,, 020, +=). In both
cases, estimation of the first-stage model for Pr(yi>0) Versus Pr(yigo)
is a standard binary probit model based on some latent random variable that
is distributed N()I(BIJ).

A grouped-data analog of Cragg’'s probit/truncated-normal model can be
defined and considered as a logical alternative to the CGDV specification.
Denoting &, and (6,,0%) as the parameters of the probit first-stage and

conditional truncated-normal second-stage models, respectively, the

log-likelihood function of the grouped-data Cragg specification (CRGDV) is

L= log(1 - o(X,8,)) + ] [log(sl—m——) -0(— )) +
1eQ, ‘ ied,

C
Qa

X, B,

Log o(X,8,) = log o ; )] (70)
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a =X,
. 162
S Y aalr_aly o VN T o ommalv o N7 r v st 1 \
=L L AUBNITRVAL D)) T ) LORYIA. Py /] T L 108UP\ )=
: i , i - g
ieQ, 1eq, ieq,
a =-X.b
q 1 2 Xib2
& ( ———) ) - _—
(o(—— ))=1logd(~—) ] (71)

The maximum likelihood estimates of (8,,8,,0) can be obtained by the two
stage method:

1) Probit estimation of 8, based on the terms in the first square

brackets in (71);
2) TGDV estimation as described earlier based on the terms in the
second square brackets.
Furthermore, note that when 8, =8,/0, (70) reduces to the log-likelihood
function of the CGDV model (66).

One can test for the appropriateness of the CRGDV model vis-a-vis the
CCDV specification in several ways. First is a likelihood ratio test based
on estimation of both specifications. Since the CGDV model imposes k
parameter restrictions of the form 81, = (52./0), j=1,...‘.,k, on the CRGCV

J J

CGDV-SLCRGDV) is distributed as asymptotically)

central x? with degrees of freedom k under the null hypothesis that CGDV is

model, the statistic -2( %

the appropriate specification. (F.Z is the maximized log-likelihood
function value under specification Z). Second, along the lines suggested
by Lin and Schmidt in the continuous dependent variable case, one can.
design a Lagrange multiplier test for the appropriateness of the
restrictions implied by the CGDV specification. Because such a test relies
only on estimation of the restricted (CGDV) specification rather than of

both models, it is an appealing alternative when the CGDV model is easily

estimated. As the details of the derivation of this test statistic would
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parallel closely the Lin and Schmidt work, they are not sketched here.
Their test is in fact the limiting version of that suggested here as the
size of the intervals goes to zero and their number to infinity. Finally,
a Wald test analogous to that suggested earlier in the analysis of the
continuous version of the Cragg model can be easily constructed.

To summarize, the TGDV model has been proposed as a useful estimation
technigue both when the unconditional distribution of the dependent
variable is truncated and grouped in intervals and when the conditional
probability distribution of grouped data is truncated, this occurring in
one instance when certain restrictions implied by the GDV/CGDV
specification are untenable.

We turn now to a discussion that casts GDV estimation in an entirely
different role: Here focus is on situations where point data of the latent
Yz variates are in fact recorded. The data may be such that these
realizations are of a censored or truncated nature, but in the most general
of cases all points on the real line are candidates. The problem of
interest here is that it is possible that the data are recorded or measured
with error.

It is well known that if the independent variables are measured
without error and the nature of the dependent variable is such that it is
both realized over the entire real line and that measurement errors
therewith associated are stochastic, additive, and have null expectation,
then least squares provides consistent parameter estimates. The reason of
course is that the additive measurement errors on the Yy serve only to
change the variance of the additive model error, leaving unaffected all

requisite conditions for consistent estimation.



4-56
However, Stapleton and Young (SY) (1984) have demonstrated that when
the dependent variable is not realized over the entire real line, but is
rather of a censored or truncated nature, maximum likelihood estimation
yields inconsistent parameter estimates when the dependent variable is

measured with error: The version of the SY model we consider is

*
Ty = X8y (72)
*
yl = yl + Vi, rhs of (72) > O (73)
= C, else
T * *
= O’ else (74)
d * 0
LR PR (75)
= 0, else

Define the censored-SY (CSY) model as that resulting when the y, are
recorded for ail i and the truncatec-ST (TSY) model as that resulting when
only the positive y, are used. The YI are the true but unobserved
positive-censored realizations of the Vt The indicators di are assumed
available; these give information about the underlying structure of the

latent errorless classification mechanism. That is, assuming all recorded

) *
measurements of y; are nonnegative, we know when y;=0 because Yy < O versus

_ * *
when y;=0 because y;>0 and vi<=¥;  An example of this type of scheme is
where it is known with certainty whether or not a person participated in

the labor force at time t, but the number of hours of
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participation--necessarily recorded as nonnegative--is possibly measured
with error. Cast thusly, it is probably true that the incidence of similar
phenomena in other areas of microdata analysis is significant.

SY have shown that although maximum likelihood estimation of either
the censored model based on all observations or the truncated model based
only on the positive v, yields inconsistent parameter estimates, it s
possible in the censored data case to obtain consistent parameter estimates
via a variety of two-step techniques. In its most familiar form,
associated with Heckman’s work, a first-stage binary probit model on the d;
is estimated. The results from this are used to construct estimates of
¢(XiB/o) and @(XiS/o) which in turn are used to construct the expectation

function (EF) of Yi

E(Yi) = xiscbi + o¢i (76)
or the conditional expectation function (CEF) of vy,

E(y,d;=0) = X, 8 + 06,/9,. (77)

Assuming E(vily:)=0, SY demonstrate that least-squares estimation of (§,c¢;
in (76), (77), or in several other possible formulations yields consistent
estimates.

When the data are truncated rather than censored, OLS estimation via
the EF or CEF methods proposed by SY is no longer feasible. Consistent

estimates of % and g cannot be obtained by probit since di =0 Vi in the
i

truncated case. Thus the EF and CEF cannot be estimated by OLS (see

Maddala (1983, p. 167)) SY do propose a truncated nonlinear least squares
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method for obtaining consistent estimates based only on positive Y. Such
a technique is highly nonlinear, however, and potentially difficult to
estimate.

Given certain assumptions about the nature of the measurement errors,
we now show how the parameters of both the TSY and CSY models can be
estimated by maximum likelihood GDV methods. The argument is as follows.
The source of the inconsistency of the maximum likelihood estimates of the
TSY and CSY models is the measurement error on the y:.- The likelihood
function formulated on the assumption that the observed yj are measured
without error is therefore based on incorrect contributions of each
observation to the total likelihood when measurement errors are present,
maximum likelihood thus resulting in inconsistent parameter estimates.
(The appendix of SY gives a detailed proof of the inconsistency of maximum
likelihood.)

Consider now the possibility that the measurement error structure is
such that there exist known nonnegative scalars CL; and CU; such that

U,

fldG(vi) =1, (78)

L.
i

where U;= CU;-y;, L;=CL;-y; , and G(v;) is the distribution function of
the measurement errors Vi We allow for the possibility that there exist

CL!>CL., CU!<CU, such that
1 1 1 1

Ut
IéG(vi) =1, (79)
L!
i

U'izCU'i-yi,L'i=CL'i-yi,i.e.CLi and CU,are not necessarily the inf and

sup of the support of the density g(vi. Although the requirement that CL;
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and CU; are known is somewhat restrictive and does not admit certain forms
for the density g(vt), it is essential to the following argument. To make
the argument nontrivial, we assume that the intervals (CLi,CUi) differ
across i and that there exist i,j such that CUi;éCU- for some i, j and CLi

J
#CL. for some (possibly other) i,j, this second requirement necessary to

J

assure the boundedness of the likelihood function. Define I = (CLi,CUI ),
so it is assumed that PP(YIEIiIYiEIi) = 1. Heuristically, this means that
the data and measurement error structure are such that it can be said that
given Yo yz falls between CL and CUi with certainty, i.e. the probability
of “misclassifying” y}‘ is zero. The plausibility of this assumption will of
course differ across empirical applications.

Given the above assumptions on the measurement error structure, it may
be demonstrated that maximum likelihood estimation of either the CSY or TSY

models via CGDV or TGDV techniques is a feasible approach to consistent

parameter estimation when measurement errors may be present. Defining the

intervals (CLi,CUi) analogous to (aq , ap_) above, but no longer imposing
; i
i

the restriction that these intervals be established ex _ante, estimation can

proceed in the manner of equations (63)-(65), with now
L, = ol(cu; - x,8)/0) = o((SL, - X, 8)/c), (80)

and

T
% =} log (L) (81)
i=1 :

The maximum likelihood estimates derived by maximizing (81), given the
assumption that the misclassification probabilities are zero, are
consistent, the argument following exactly that for the CGDV and TGDV

models described earlier.
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There is, of course, a tradeoff of sorts involved here. The larger
the intervals (CLi,CUi), the smaller will be the misclassification
probabilities, in general. However, the larger the intervals, the less
efficient will be the parameter estimates as information about the actual
magnitudes of the yrir is lost. Note that when no measurement error is
present, consistent estimates still obtain, but are not least-variance.
Because the consistency properties of estimating the CSY or TS models via
GDV methods rely on zero misclassification probabilities, the efficiency
tradeoffs are probably worthwhile in many circumstances. This approach is
particularly promising in the TSY model given that SY have demonstrated an
array of computationally simple methods for estimating the CSY model but
only one method for estimating the TSY model, this being potentially
burdensome to estimate.

An outgrowth of the preceeding discussion, and indeed of the SY
discussion as well, is that a straightforward test for the measurement
error problem is available. Given that under the null hypothesis of no
measurement error, maximum likelihood estimation of either the CSY or TSY
models yields consistent and efficient parameter estimates; that such
estimates are in general inconsistent in the presence of measurement error;
and that regardless of the presence of measurement error, there exist
estimators that are consistent but inefficient, then a Hausman (1978) test
is suggested. These consistent-inefficient estimators, of course, are the
EF or CEF estimators suggested by SY and, given the appropriate assumptions
on the measurement error structure, the CGDV/TGDV estimators suggested

above. The form of the Hausman test is

~ -~ A -~ -1 ~ -~

m = T(Sl_so) (VI-VO) >(51-Bo)’ (82)
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where under HO: no measurement error, é, is the consistent-inefficient
estimate of B,éo is the efficient maximum likelihood estimate, and {ll and
\70 are the corresponding estimates of the covariance matrices. When the EF
or CEF estimators are used for ;x, the appropriate formulae for \7, can be

found in SY; when the CGDV or TGDV approach is taken, the appropriate

submatrix of the inverse of

" ree3

(dlog L,/38) (slog L,/ %8"), (83)

i=1

~

can be used to estimate V,, where 8 = (8', o)', L; is as defined in (80),
and evaluation of & is at the CGDV or TGDV estimates. Under the null
hypothesis of no measurement error, m is distributed asymptotically central
x? with k degrees of freedom.

Furthermore, note that the version of the Hausman test proposed by
Nelson (1981), whose extension to the truncated normal case was discussed
above, can also be used as a test of the measurement error hypothesis.
Since both the censored and truncated versions of the Nelson test rely on
estimates of E(X'Y) to form the test statistic, and since Nelson’s
consistent-inefficient moment estimator of this expectation remains
consistent given null expectation of the measurement errors, then his test
gualifies as a Hausman test for the measurement error problem. However,
because the Nelson tests are appropriate tests for a wide variety of
problems (heteroscedasticity, nonnormality, to name two), a significant
Nelson statistic will not necessarily shed light on the nature of the

problem it has diagnosed.
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PREDICTION IN ESTIMATED PARTICIPATION MODELS

The preceeding sections have surveyed some econometric methods for
estimating recreational participation models. Because there exists a
variety of structural or behavioral assumptions about the mechanisms that
give rise to the statistical formulations, as well as a variety of data
collection methods and coding configurations, it has been necessary to
consider a set of possible approaches to estimation strategy. The models
considered are largely of a non-nested nature (i.e. Model A cannot
generally be obtained as a restricted version of Model B and vice-versa).
And the techniques for non-nested model evaluation are largely undeveloped
in situations where the model error structures are nonnormal. Thus, it is
necessary that comparisons be made in terms of alternative predictions
across specifications if policy is to be guided sensibly.

While the goal in much of this chapter has been the goal to obtain
consistent parameter estimates of participation models, specified, in and
of themselves, consistently estimated models are nothing more than
aesthetically-pleasing curiosa. Their raison d’t;tre insofar as the present
analysis is concerned is of course to serve as tools for predicting the
impacts of changes in water quality or recreation participation.

In the practical realm of policy analysis, Intriligator (1983) refers
to such prediction methods as the simulation approach to policy evaluation
and summarizes the approach as follows:

This approach uses the estimated reduced form to determine

alternative combinations of policy variables and endogenous

variables for a given set of possible policies...

The policymaker would provide the model builder with the

alternative policies, and the model builder would, in turn,
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provide the decision maker with their consequences for the

endogenous variables. The policymaker would then choose a

desired policy and its outcome...

This approach requires that the policymaker formulate an explicit

set of policy alternatives and that an estimated econometric

model incorporating the appropriate policy variables be

available. Simulation, based in part on communication between
policymaker and model builder, represents a valuable approach to
policy evaluation that could be used in any policy area in which
there exists a relevant estimated econometric model.

(Intriligator (1983), p. 214).

We think it necessary to close this chapter with a discussion of
prediction in the context of the econometric models discussed earlier
because the relevant prediction formulae and methods vary considerably
across the model specifications. Though the results presented below are
hardly profound, their presentation merits the space used basically because
there exists to our knowledge no unified treatment of prediction that
includes the several econometric models proposed above. Such a unified
treatment should be of interest to the policy analyst interested in
juxtaposing the estimated policy outcomes from the various econometric
specifications, which are, as noted above, largely nonnested.

Prediction in the context of the econometric participation models
discussed in this chapter is the process whereby one assesses the change in
the estimated response with respect to a change in some control variable,
specifically water quality. The statistical models estimated are typically
of a nature for which it is possible to describe one or more of the

following:
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a) the expectation of the dependent variable, E(Yi>=f(XiB);

b) the conditional expectation of the dependent variable, e.g.,

E(Y, |y, >0)=g(X, 8);

c) the probability that the dependent variable equals sane value,
e.g., Pr(Yi=yi)=h(XiB) (this description pertains mainly to
gualitative dependent variable models such as the multinomial model
described earlier).

For example, the objective of the econometric estimation of some model

~

might be to obtain an estimate of E(Yi) as Yi=f(xi§). Prediction, then,
would be the process whereby one estimates BE(Yi)/“ax.lk by B:Ii/axik, with
Xik some control variable specific to i. In the subsequent discussion, we
take the term “prediction” generally to mean the expected change in y
attributable to a hypothetical change in sane control variable X, i.e.,
3E(y)/ 3X. Frequently, the estimated changes are couched in terms of
elasticities in order to abstract from magnitudinal considerations; here

one might use estimates of alogE(Yi}/alogxi We turn now to an analysis

K
of how prediction of the above nature would apply to the econometric models
discussed in this chapter.

The ordinary least squares (OLS) specification is an obvious starting
point. Although we have seen how OLS will generally be an inappropriate
analytical tool given the nature of most participation data likely to be
encountered, the analytics of prediction in the OLS model are quite simple

and serve to motivate the remainder of the discussion.

Recall that the basic linear model can be written as
=X ey (84)
-1

If we have E(ei)=o, then E(Yi)=xi8. OLS estimates 8 by 8 = (X'X) "X'y =7

estimates E(Y;) by Y =X 8. Note that =(y)=E(X 8)=X (X'X) X' (XE+E(e} =
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=E(Yi) so that §i in the OLS model is an unbiased estimator of E(Y;) given
the ideal conditions described earlier in this chapter. Prediction of the
expected change in yj for a change in Xik in this case is simply a§i/axik =

~

B, or the k-th slope estimate. In the linear model, it is fairly standard

k’

practice to use the elasticity alogYi/aJ.chik and evaluate the elasticity

~

viz. 8 X /Y, where the overbar

at the means of the observed ¥ and X o KX

denotes a sample mean.
The Tobit model lends itself to description by either its expectation
function or its conditional expectation function. Respectively, these are

E(Yi) = Xisd)i + 0¢,

. (85)

and

B =

H(Yiiyi>o) X, B+ 00/0,, (86)
where ¢ and ¢i are evaluated at Xi8/a. Following Maddala (1983), the
respective predictions are

BE(Y )/3%;, = @8 (87)
and

= 1 - - 2

aa(yilyim)/axik B, (1 (X B¢, /0, 0)=(9,/0.)%) (88)
In elasticity form, these partial derivatives are multiplied by X; k/E(Y 1),
and Xik/E(Yi |yi>0)), respectively. Evaluation, again, might be at the
sample means of the Yi and X;. However, note that in this specification,
as in other nonlinear-in-parameters specifications, the evaluated
predictions will typically depend not only on the selected y and x,
evaluation points, but also on the other (noncontrol) elements of the

X-vectors. In the general nonlinear case, evaluation at the means of the

Xi does not generate the same prediction as is yielded by calculating the

mean of the estimated individual predictions. This is merely a corollary

of a general property of nonlinear functions where E(f(Z)) # f(E(Z)’
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Thus, another obvious method of evaluation would be to calculate the
prediction for each individual in the sample and average the individual
predictions. Such a strategy might be valuable when contemplated policy
measures take the form of, say, an x-percent change in the control variable
of each individual from that individual's prevailing or pre-policy level.
In the probit/truncated-normal version of the Cragg estimator (the
Cragg equations (7) and (9)) the expectation function can be written as
E(Yi) = E(Yilyi>0)Pr(yi>0) (89)
=[Xi82 v 020,,/0, .00, (90)
and
E(Y,[y,>0) = X6, + 0,0,/

;| ¥io

where ¢ip and <I>.l are the standard normal density and distribution

P
functions evaluated at X; Bp/op (p=1,2). (Recall that o, is normalized =
1). In this specification,. the formula for E}E(Yi]yi>0)/’axik is identical

to that for the Tobit specification, equation (86) above. The formula for
the unconditional version is

OE(Y, )/0% = By ®yq * XiBo0 16+ 0ok oleg By -

(91)

(8,12, 08,, 7050 = (hip¥yy 8, /0,0 0

where Xi and Z, = (Xiﬁz/cz)- Note that when 6,=8, and o, =

2 = %27%

o,, i.e., when the Tobit restrictions are imposed on this version of the

2

Cragg model, (91) reduces to the far less-complicated expression (87).

The second version of the Cragg model considered earlier is that where
the second-stage conditional density is lognormal, with log Yi—N(XiBZ,oi)
conditional on y;>0.  Again defining the appropriate expectation functions

yields
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E(Y,) = E(Yi]yi>O)Pr(yi>O)
(92)
= exp()(ifs2 + .5c5§)<1>iIl
and
E(Y;]y;>0) = exp (X8, + .503), (93)

where we have used the well-known property of lognormal densities that
where the log of a lognormally-distributed random variable has mean u and
variance 8%, then the expected value of the random variable is exp(u +
.56%) (See Johnson and Kotz (1970, Chapter 14) for further details on the

properties of the lognormal). The relevant partial derivatives are

= 2
BE(Yi)/axik = exp(X 8, + .502) WNBIK + ¢i132k] (94)
and
= 2
aa(yilyi>0)/axik exp(X; B, *+ .50%)8,, . (95)
In all cases, elasticity forms are calculated by the appropriate

multiplication by either xik(E(Yi))'1 or ;. (E(Y;1y;>0) )1 of the partial
derivative formulae derived above.

The Heckman two-equation model, recall, is cast in terms of

*
unconditional densities of the random variables Yil and le. Thus, tne
unconditional expectation of Yil is a linear function of parameters,
- 96

E(Y,,) = X8, (96)
with

BE(Y, )/8x;, = By, (97)
If the moment of interest is the conditional expectation of Y;, given y;,=1
(in the notation of equation (34)), then we have from equations (35) and
(36)

E(Yi1[yi2=1) = X By * 0120 5/0,{10 ), (98)

where ¢12 and v, are the standard normal density and distribution
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functions evaluated at (Xisz/oz). Here,

- _ . _ 2 - 99
an(yi1lyi2_1)/axik = B+ (024,85, /03)[% =2 1, (99)

1k 2k ie

where now we define )\i2 = ¢i2/(1-¢12) and Ziy = Xisz/oz.

The derivations of the prediction formulae for the Poisson model are
straightforward. Recall from equation (49) that the expectation function
for the Poisson specification is

E(Yi) = exp(XiB). (100)
(Note that the Poisson specification differs from the others discussed
above in that the conditional expectation function has not been
considered.s)
Thus we have

ZBE(Yi)/axik = Bkexp(XiB) (101)
or, in elasticity form,

BE(Yi)xik/axikE(Yi) = B X (102)
The formulae for the geometric specification, with E(Yi)=exp(Xi8), are also
(101) and (102).

Recall for the Stewart or grouped-dependent variable model that in any
interval (a ,a,.) one has for a conditional expectation

p-1 P
E = Loz .'=olZ_di/lel2 )=0(2Z__,0 1, (103)
L(Yilyis(ap_1,ap)) X; 8+ olelZ__."melZ 0y (z)-e(z _.)

where Zp:(ap-xie)/c. The probability that the random variable Y, is

realized in (ap_],ap) is of COLJrseI:\:p)-Q(Zp_1)y Therefore,  the
unconditional expectation function is
P
E(Y,) =pE1E(Yi|yie(ap_1,ap))Pr‘(yi; a:_,,ap))
(104)

X, -
. (Ble(z -0z

DI Z:_!)'@(Zp)).

¥ ™o

1
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The strong resemblance between (104) and (85) is clearly more than
coincidence, such of course owing to the foundations of both the Tobit and
the GDV estimators in normally-distributed latent variables.
Because the calculations are a bit messy, the prediction formulae are
derived only for the expectation function; the conditional expectation

variant is analogously derived. We have from (104)

BE(Yi)/Bxik =

. [(e -9 ) + 2Xi8(¢p‘¢p_1)]8k, (105)

NS

H 10

where ¢>p=¢(zp) and ¢p=¢(zp) ) The elasticity version is again derived by
the appropriate multiplication.

In all the above formulations, the dependent variables or their latent
bases were of a quantitative nature, thus allowing direct quantitative
representation of the moments or conditional moments of interest. The
prediction strategy when the dependent variable is qualitative rather than
guantitative is somewhat different. However, in the one qualitative
dependent variable model discussed in this chapter--the multinomial--the
nature of the dependent variable is such that a fairly direct translation
from the qualitative outcome to a quantitative prediction is possible. The
strategy is as follows. Recall that the qualitative outcome measures of
interest in the multinomial model are the probabilities of engaging in any
of a set of activities on a given day. To translate these probabilities
into quantitative participation measures for some time interval (a year,
e.g.,), one simply sums the activity-specific day probabilities over the

year. |If the day participation probabilities are
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Fish .02
Boat .01
Swim .05
Nonrecreation .92,

Then the annual quantitative participation measures are

Fish .02(365) = 7.12 days
Boat .01(365) = 3.56 days
Swim .05(365) = 17.80 days
Nonrecreation .92(365) = 327.52 days.

The prediction strategy, therefore, is to assess the responsiveness of the
daily activity-specific probabilities to changes in the control variable,
assess the ex post magnitude of annual participation in the various
activities, and compare these post-policy magnitudes to those that were
estimated to prevail in the pre-policy period.

The prediction equations are based on the probabilities defined in
(57). For individual i and choice Z, one has

= { ¥

PZ. exp\Xi BZ)@ exp()(i BJ.), (106)
1 jeq

where & is the choice index set.

Therefore,

o) = D - a 4 b
oF, /axik P, (BZ ) exp(XiB.)..4k/ I exp ‘Xisj)‘)' (107)

i i “k jeq K jeq

The elasticity formulation is

(apz./axik)(xisz ) = xik<82k

. ' -z exD(XiBj)Bjk/Z exp(XiBj)]). (108)
i i jes

Je@
CONCLUDING REMARKS
This chapter has discussed a variety of approaches to econometric

estimation of recreation participation models. The menu of estimators
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discussed while broad, hardly exhausts the set of candidates that are
available. The intention here has been to be suggestive of general
approaches to estimation that might be considered given heterogeneous
participation data structures.

It must be stressed that because these methods generally require
iterative solution algorithms, they are expensive to implement. Moreover,
as the subsequent chapters show, the quality of the participation and water
quality data on hand is suspect. Therefore, we decided that the potential
statistical enhancements attributable to the use of these more
sophisticated estimation techniques would be lost in the noise and, as
such, probably not worth their added costs. Accordingly, in the empirical

work to follow, more main stream techniques are utilized.
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NOTES
1. The derivation of (2) is straightforward. Given X~N{y,c?), then we

wish to show:

E(X[x>0) = u+olf(u/0)/F(u/a)/F(u/o)]
E(X|x>0) = LI e (XTW H/20% (F=F(u/a);f=f(u/a))
F v2no O
« - —_ 2 2
=:<— ] xe (x-w)*/20 dx (K = oFv/2T)
0

Let z=x~u; thus

= (zewe
~H

-z2/2¢02

E(X|x>0) dz}

@ __2 ® _ 2 2
{Ize z /202dz , U fe z</20 dz}
“H ~H
.2 2 @
{~g2e 27720 | + (Y2maF)u)
~H

X

P

2
[of /2¢
=k—'eu2 2+

= of/F + u.
- * -
Setting x = ¥y and u=xiB yields (2).
2. Recall that the binomal print model is the common designation models

of binary (0,1) outcomes that are generated by N(X_a,1) variates. See

t
Maddala (1983, chapter 2) for additional discussion.

3. The Duan, et. al. model likelihood function (their eq. 3.7) is
incorrect. They omit the multiplicative term (1/yi2) in the density for
the positive terms, this as mentioned above being the Jacobian of the
transformation from yi2)' Cragg correctly incorporates this in his eq.

(11). The values of the parameters that maximize the log-likelihood

function do not depend on this transform, although the value of the
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log-likelihood function itself does, of course, depend on the transform.
4. In the Lagrange-multiplier hypothesis testing approach, one formulates
the problem by considering the maximization of the log-likelihood function
2(8) subject to a set of (perhaps nonlinear) restrictions on & of the form

hj(6)=0. Thus, one can consider the Lagrangean function

Q(8) = & (8) + ] h.(8),
3 J

and maximize Q(6) w.r.t. 8. The test relies on the idea that when the
restricted estimate & is “near” the unrestricted ML estimateﬂe, the vector
2(5) will approach the zero vector. Further discussion is found in the
excellent piece by Breusch and Pagan (1980).

5. The resemblance is due to the fact that, given the P, = exp(XiB)
parameterization, if the geometric specification is reduced to the binary
outcomes Pr(ki:O) versus Pr(k= 1 or ki = 1 or...), then the binary logit
model results. This result is interesting in that consistent estimates of
Bin the geometric model as specified can be obtained via a binary logit

model. Such estimates are inefficient, however, as information on the

magnitudes of the ki?. 1 is discarded.

6. The only difference, as is obvious from inspection of (4), is that in
the one-trial case, Etj = 1 for all m while in the multiple-trial case
m

considered here It, = T. Existing programs, then, are modified as to the
v
m

number of  times the logP, terms are summed in computing the

Im
log-likelihood.
7. Inf and sup are the abbreviations for infimum and supremum,

respectively the greatest lower bound and least upper bound of a set S if
these bounds exist. If S has a minimum (resp. maximum) element, then

inf(S) = min(S) (resp. sup(S) = max(S).
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8. It would be possible to define a truncated version of the Poisson model

were only strictly positive integer realizations were admitted. Here one

would have

- y
exp( Ai)xi

Pr(¥, = y) vy =1,2,3,...

= y!(1-exp(-ki))’
=0 , else,

where (1-eprﬂi))is the truncation normalizing constant equal to
u-Pr(Yizon. This could, then, be considered a conditional distribution
for tr1eyi=0. Some of the same questions as arise in the Lin-Schmidt
critigue of the Tobit model are present in the discussion of the truncated
Poisson formulation. specifically, one might question whether the Poisson
binary probabilities Pr(Yi:O) and Pr(Yizl or Y;=2 or Y,=3 or...)
(zl-Pr(Yi:OD are governed by the same statistical process as are the
conditional probabilities Pr@ﬁ:y|y:1 or y=2 or...). Because such

considerations require considerable further development, we postpone their

discussion for future research.
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